找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ergodic Theory and Semisimple Groups; Robert J. Zimmer Book 1984 Springer Science+Business Media New York 1984 Arithmetic.Identity.Lattice

[复制链接]
查看: 43917|回复: 44
发表于 2025-3-21 17:38:28 | 显示全部楼层 |阅读模式
书目名称Ergodic Theory and Semisimple Groups
编辑Robert J. Zimmer
视频video
丛书名称Monographs in Mathematics
图书封面Titlebook: Ergodic Theory and Semisimple Groups;  Robert J. Zimmer Book 1984 Springer Science+Business Media New York 1984 Arithmetic.Identity.Lattice
描述This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi­ simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are anumber of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be deali
出版日期Book 1984
关键词Arithmetic; Identity; Lattice; algebra; ergodic theory; theorem
版次1
doihttps://doi.org/10.1007/978-1-4684-9488-4
isbn_softcover978-1-4684-9490-7
isbn_ebook978-1-4684-9488-4Series ISSN 1017-0480 Series E-ISSN 2296-4886
issn_series 1017-0480
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

书目名称Ergodic Theory and Semisimple Groups影响因子(影响力)




书目名称Ergodic Theory and Semisimple Groups影响因子(影响力)学科排名




书目名称Ergodic Theory and Semisimple Groups网络公开度




书目名称Ergodic Theory and Semisimple Groups网络公开度学科排名




书目名称Ergodic Theory and Semisimple Groups被引频次




书目名称Ergodic Theory and Semisimple Groups被引频次学科排名




书目名称Ergodic Theory and Semisimple Groups年度引用




书目名称Ergodic Theory and Semisimple Groups年度引用学科排名




书目名称Ergodic Theory and Semisimple Groups读者反馈




书目名称Ergodic Theory and Semisimple Groups读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:26 | 显示全部楼层
发表于 2025-3-22 00:48:53 | 显示全部楼层
发表于 2025-3-22 05:21:31 | 显示全部楼层
发表于 2025-3-22 11:13:00 | 显示全部楼层
Christopher McElroy,Stefan Jennewein over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.
发表于 2025-3-22 15:08:46 | 显示全部楼层
Rigidity, over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.
发表于 2025-3-22 18:33:38 | 显示全部楼层
发表于 2025-3-23 01:12:40 | 显示全部楼层
发表于 2025-3-23 03:26:49 | 显示全部楼层
Monographs in Mathematicshttp://image.papertrans.cn/e/image/314495.jpg
发表于 2025-3-23 06:00:51 | 显示全部楼层
https://doi.org/10.1007/978-1-4684-9488-4Arithmetic; Identity; Lattice; algebra; ergodic theory; theorem
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 02:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表