找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ergodic Theory; Independence and Dic David Kerr,Hanfeng Li Book 2016 Springer International Publishing AG 2016 Ergodic Theory.Topological D

[复制链接]
查看: 16889|回复: 53
发表于 2025-3-21 16:53:39 | 显示全部楼层 |阅读模式
书目名称Ergodic Theory
副标题Independence and Dic
编辑David Kerr,Hanfeng Li
视频video
概述Provides an introduction to the ergodic theory and topological dynamics of actions of general countable groups.Covers several topics of current research interest, including Popa‘s cocycle superrigidit
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: Ergodic Theory; Independence and Dic David Kerr,Hanfeng Li Book 2016 Springer International Publishing AG 2016 Ergodic Theory.Topological D
描述This book provides an introduction to the ergodic theory and topological dynamics of actions of countable groups. It is organized around the theme of probabilistic and combinatorial independence, and highlights the complementary roles of the asymptotic and the perturbative in its comprehensive treatment of the core concepts of weak mixing, compactness, entropy, and amenability. The more advanced material includes Popa‘s cocycle superrigidity, the Furstenberg-Zimmer structure theorem, and sofic entropy.. . The structure of the book is designed to be flexible enough to serve a variety of readers. The discussion of dynamics is developed from scratch assuming some rudimentary functional analysis, measure theory, and topology, and parts of the text can be used as an introductory course. Researchers in ergodic theory and related areas will also find the book valuable as a reference.
出版日期Book 2016
关键词Ergodic Theory; Topological Dynamics; Weak Mixing; Entropy; Entropy Independence; Sofic Groups; Homoclinic
版次1
doihttps://doi.org/10.1007/978-3-319-49847-8
isbn_softcover978-3-319-84254-7
isbn_ebook978-3-319-49847-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer International Publishing AG 2016
The information of publication is updating

书目名称Ergodic Theory影响因子(影响力)




书目名称Ergodic Theory影响因子(影响力)学科排名




书目名称Ergodic Theory网络公开度




书目名称Ergodic Theory网络公开度学科排名




书目名称Ergodic Theory被引频次




书目名称Ergodic Theory被引频次学科排名




书目名称Ergodic Theory年度引用




书目名称Ergodic Theory年度引用学科排名




书目名称Ergodic Theory读者反馈




书目名称Ergodic Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:45:06 | 显示全部楼层
发表于 2025-3-22 03:36:16 | 显示全部楼层
发表于 2025-3-22 07:04:57 | 显示全部楼层
发表于 2025-3-22 09:32:19 | 显示全部楼层
M. N. Walsh,J. J. Hubert,E. M. CarterErgodicity, freeness, and Poincaré recurrence are the three most basic properties in ergodic theory, and not coincidentally they can all be motivated in analogy with the simple picture that describes arbitrary group actions on ordinary sets.
发表于 2025-3-22 16:25:17 | 显示全部楼层
,Exploratory Data Analysis in “R”,As shown in Theorem ., every unitary representation . of a group on a Hilbert space decomposes uniquely into a sum of a weakly mixing representation and a compact representation. The weakly mixing and compact vectors each form a closed .-invariant subspace of ., and these subspaces are orthogonal and have direct sum equal to ..
发表于 2025-3-22 17:25:01 | 显示全部楼层
发表于 2025-3-22 22:23:11 | 显示全部楼层
Microbial Biosurfactants and BiodegradationWhile the Koopman representation can be used to distinguish many types of p.m.p. actions, it cannot distinguish nontrivial Bernoulli actions over an infinite group, as one always gets infinitely many copies of the left regular representation, along with a copy of the trivial representation (see Section .).
发表于 2025-3-23 05:26:09 | 显示全部楼层
Susanne Zibek,Gloria Soberón-ChávezIn Section . we arrived at a definition of entropy for p.m.p. actions of amenable groups by combining a concept which is internal to the space (the Shannon entropy of a partition) with one which is internal to the group (the process of averaging over Følner sets).
发表于 2025-3-23 07:51:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 09:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表