用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Equivariant K-Theory and Freeness of Group Actions on C*-Algebras; N. Christopher Phillips Book 1987 Springer-Verlag Berlin Heidelberg 198

[复制链接]
查看: 42656|回复: 35
发表于 2025-3-21 16:42:59 | 显示全部楼层 |阅读模式
书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras
编辑N. Christopher Phillips
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Equivariant K-Theory and Freeness of Group Actions on C*-Algebras;  N. Christopher Phillips Book 1987 Springer-Verlag Berlin Heidelberg 198
描述Freeness of an action of a compact Lie group on a compact Hausdorff space is equivalent to a simple condition on the corresponding equivariant K-theory. This fact can be regarded as a theorem on actions on a commutative C*-algebra, namely the algebra of continuous complex-valued functions on the space. The successes of "noncommutative topology" suggest that one should try to generalize this result to actions on arbitrary C*-algebras. Lacking an appropriate definition of a free action on a C*-algebra, one is led instead to the study of actions satisfying conditions on equivariant K-theory - in the cases of spaces, simply freeness. The first third of this book is a detailed exposition of equivariant K-theory and KK-theory, assuming only a general knowledge of C*-algebras and some ordinary K-theory. It continues with the author‘s research on K-theoretic freeness of actions. It is shown that many properties of freeness generalize, while others do not, and that certain forms of K-theoretic freeness are related to other noncommutative measures of freeness, such as the Connes spectrum. The implications of K-theoretic freeness for actions on type I and AF algebras are also examined, and in
出版日期Book 1987
关键词K-theory; algebra; group action; lie group
版次1
doihttps://doi.org/10.1007/BFb0078657
isbn_softcover978-3-540-18277-1
isbn_ebook978-3-540-47868-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras影响因子(影响力)




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras影响因子(影响力)学科排名




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras网络公开度




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras网络公开度学科排名




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras被引频次




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras被引频次学科排名




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras年度引用




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras年度引用学科排名




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras读者反馈




书目名称Equivariant K-Theory and Freeness of Group Actions on C*-Algebras读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:06:23 | 显示全部楼层
发表于 2025-3-22 02:14:37 | 显示全部楼层
Equivariant K-Theory and Freeness of Group Actions on C*-Algebras
发表于 2025-3-22 04:40:13 | 显示全部楼层
发表于 2025-3-22 12:29:24 | 显示全部楼层
发表于 2025-3-22 16:29:26 | 显示全部楼层
0075-8434 nt K-theory. This fact can be regarded as a theorem on actions on a commutative C*-algebra, namely the algebra of continuous complex-valued functions on the space. The successes of "noncommutative topology" suggest that one should try to generalize this result to actions on arbitrary C*-algebras. La
发表于 2025-3-22 20:05:30 | 显示全部楼层
发表于 2025-3-22 21:58:13 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/313547.jpg
发表于 2025-3-23 02:55:32 | 显示全部楼层
发表于 2025-3-23 08:34:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-14 11:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表