找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Equilibrium Theory in Infinite Dimensional Spaces; M. Ali Khan,Nicholas C. Yannelis Book 1991 Springer-Verlag Berlin Heidelberg 1991 Gleic

[复制链接]
楼主: 动词
发表于 2025-3-23 13:32:21 | 显示全部楼层
https://doi.org/10.1007/978-3-319-21106-0in the presence of infinitely many commodities the Aumann (1964, 1966) measure space of agents, i.e., the interval [0,1] endowed with Lebesgue measure, is not appropriate to model the idea of perfect competition and we provide a characterization of the “appropriate” measure space of agents in an inf
发表于 2025-3-23 16:21:11 | 显示全部楼层
发表于 2025-3-23 19:11:44 | 显示全部楼层
Topological Analysis of the Fukui Functionrinciple is proven, and the set of equilibria is compared with the sets of strategy and action correlated equilibria. The equilibrium correspondence is shown to be discontinuous with respect to the information structure of the game, in contrast with previous continuity results for strategy and actio
发表于 2025-3-23 22:59:40 | 显示全部楼层
发表于 2025-3-24 03:13:48 | 显示全部楼层
发表于 2025-3-24 08:12:44 | 显示全部楼层
发表于 2025-3-24 11:33:56 | 显示全部楼层
发表于 2025-3-24 15:07:29 | 显示全部楼层
Applications of Synchrotron RadiationThe equilibrium existence theorem we obtain resembles Robert Aumann’s (1966) Auxiliary Theorem, in which he assumes that preferences are commodity-wise saturated. Our result may therefore be looked upon as a first step towards a satisfactory existence theorem for .. (if such a theorem exists).
发表于 2025-3-24 20:58:37 | 显示全部楼层
发表于 2025-3-25 02:33:57 | 显示全部楼层
https://doi.org/10.1007/978-3-540-49556-7We provide sufficient conditions which guarantee the existence of correlated equilibria in noncooperative games with finitely many players.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 03:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表