找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Equidistribution in Number Theory, An Introduction; Andrew Granville,Zeév Rudnick Conference proceedings 20071st edition Springer Science+

[复制链接]
楼主: OAK
发表于 2025-3-23 13:43:41 | 显示全部楼层
,SIEVING AND THE ERDŐS–KAC THEOREM,We give a relatively easy proof of the Erdős-Kac theorem via computing moments. We show how this proof extends naturally in a sieve theory context, and how it leads to several related results in the literature.
发表于 2025-3-23 15:50:23 | 显示全部楼层
THE DISTRIBUTION OF PRIME NUMBERS,What follows is an expanded version of my lectures at the NATO School on Equidistribution. I have tried to keep the informal style of the lectures. In particular, I have sometimes oversimplified matters in order to convey the spirit of an argument.
发表于 2025-3-23 21:20:42 | 显示全部楼层
THE DISTRIBUTION OF ROOTS OF A POLYNOMIAL,How are the roots of a polynomial distributed (in ℂ)? The question is too vague for if one chooses one’s favourite complex numbers z., z., ⋯, z. then the polynomial Π..(x - z.) has its roots at these points.
发表于 2025-3-23 23:05:24 | 显示全部楼层
发表于 2025-3-24 03:23:43 | 显示全部楼层
发表于 2025-3-24 07:59:57 | 显示全部楼层
发表于 2025-3-24 11:39:50 | 显示全部楼层
发表于 2025-3-24 17:27:38 | 显示全部楼层
https://doi.org/10.1007/978-1-4020-5404-4Chemistry; Mathematics; NATO; Physics; Prime; Prime number; Science; Series II; algebraic varieties; calculus
发表于 2025-3-24 19:00:48 | 显示全部楼层
Saket Verma,L. M. Das,S. C. Kaushikistribution and, in turn, the bounding of relevant exponential sums. Several of the bounds we give have since been quantitatively sharpened, by Garaev (Garaev, 2005) and, spectacularly so, in recent work of Bourgain (Bourgain, 2004; Bourgain, 2005).
发表于 2025-3-25 02:40:17 | 显示全部楼层
https://doi.org/10.1007/978-3-319-23537-0jective hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal with CM-points on the modular curve. This lecture concerns one of the earliest examples, namely torsion points on group varieties.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 21:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表