找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Equadiff 82; Proceedings of the I H. W. Knobloch,Klaus Schmitt Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Boundary

[复制链接]
楼主: whiplash
发表于 2025-3-23 22:40:04 | 显示全部楼层
https://doi.org/10.1007/978-3-031-01859-6We use classical Leray-Schauder techniques in order to derive the existence of periodic solutions of a generalized Liénard equation with delay.
发表于 2025-3-24 03:37:02 | 显示全部楼层
发表于 2025-3-24 07:06:15 | 显示全部楼层
Periodic solutions of generalized Lienard equations with delay,We use classical Leray-Schauder techniques in order to derive the existence of periodic solutions of a generalized Liénard equation with delay.
发表于 2025-3-24 12:55:07 | 显示全部楼层
Oscillation and nonoscillation properties for second order nonlinear differential equations,We survey oscillation and nonoscillation criteria for the generalized Emden-Fowler differential equation y″+q(x)y.=0, q>0, γ>0 with particular emphasis on the duality between the sublinear and superlinear cases.
发表于 2025-3-24 17:07:33 | 显示全部楼层
发表于 2025-3-24 22:45:40 | 显示全部楼层
https://doi.org/10.1007/978-3-658-10354-5f their results from the view of singularity theory and we will also indicate how this theory may be used to set up numerical methods for singular solutions such as bifurcation points or isolated points.
发表于 2025-3-25 02:25:20 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-7924-6nces on these equations together with the physical phenomena where they arise. In particular we consider a generalized Burgers‘ equation and we sketch a method for solution in series by using the theory of Sobolevskij and Tanabe. Then we study the KdV equation with nonuniformity terms and we describ
发表于 2025-3-25 05:52:55 | 显示全部楼层
发表于 2025-3-25 08:14:45 | 显示全部楼层
Equadiff 82978-3-540-38678-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-25 13:24:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 21:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表