找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ensembles in Machine Learning Applications; Oleg Okun,Giorgio Valentini,Matteo Re Book 2011 Springer Berlin Heidelberg 2011 Computational

[复制链接]
楼主: 复杂
发表于 2025-3-23 12:05:15 | 显示全部楼层
发表于 2025-3-23 16:36:45 | 显示全部楼层
Bias-Variance Analysis of ECOC and Bagging Using Neural Nets,o understand the overall trends when the parameters of the base classifiers – nodes and epochs for NNs –, are changed. We show experimentally on 5 artificial and 4 UCI MLR datasets that there are some clear trends in the analysis that should be taken into consideration while designing NN classifier systems.
发表于 2025-3-23 18:21:57 | 显示全部楼层
Fast-Ensembles of Minimum Redundancy Feature Selection,me prevents them from scaling up to real-world applications.We propose two methods which enhance correlation-based feature selection such that the stability of feature selection comes with little or even no extra runtime.We show the efficiency of the algorithms analytically and empirically on a wide range of datasets.
发表于 2025-3-24 01:50:36 | 显示全部楼层
Learning Markov Blankets for Continuous or Discrete Networks via Feature Selection,nce for feature selection criteria. We compare our performance in the causal structure learning problem to a collection of common feature selection methods.We also compare to Bayesian local structure learning. These results can also be easily extended to other casual structure models such as undirected graphical models.
发表于 2025-3-24 02:46:53 | 显示全部楼层
发表于 2025-3-24 09:27:15 | 显示全部楼层
发表于 2025-3-24 11:54:43 | 显示全部楼层
发表于 2025-3-24 17:50:20 | 显示全部楼层
发表于 2025-3-24 21:53:15 | 显示全部楼层
https://doi.org/10.1007/978-981-19-5106-0several ensemble methods: Bagging , Random Subspaces, AdaBoost.R2 and Iterated Bagging. For all the considered methods and variants, ensembles with Random Oracles are better than the corresponding version without the Oracles.
发表于 2025-3-25 02:15:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 19:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表