找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ensemble Methods in Data Mining; Improving Accuracy T Giovanni Seni,John F. Elder Book 2010 Springer Nature Switzerland AG 2010

[复制链接]
楼主: 恶化
发表于 2025-3-23 10:57:16 | 显示全部楼层
Synthesis Lectures on Data Mining and Knowledge Discoveryhttp://image.papertrans.cn/e/image/311371.jpg
发表于 2025-3-23 14:23:36 | 显示全部楼层
978-3-031-00771-2Springer Nature Switzerland AG 2010
发表于 2025-3-23 18:09:37 | 显示全部楼层
发表于 2025-3-24 01:33:54 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-0443-2 view the classic ensemble methods of Bagging, Random Forest, AdaBoost, and Gradient Boosting as special cases of a single algorithm. This unified view clarifies the properties of these methods and suggests ways to improve their accuracy and speed.
发表于 2025-3-24 05:44:11 | 显示全部楼层
Importance Sampling and the Classic Ensemble Methods, view the classic ensemble methods of Bagging, Random Forest, AdaBoost, and Gradient Boosting as special cases of a single algorithm. This unified view clarifies the properties of these methods and suggests ways to improve their accuracy and speed.
发表于 2025-3-24 07:21:48 | 显示全部楼层
发表于 2025-3-24 12:04:42 | 显示全部楼层
发表于 2025-3-24 17:04:23 | 显示全部楼层
发表于 2025-3-24 20:21:25 | 显示全部楼层
发表于 2025-3-24 23:29:37 | 显示全部楼层
The Science and Engineering of Materialsng complexity according to a model’s behavior rather than its appearance, the utility of Occam’s Razor is restored. We’ll demonstrate this on a two-dimensional decision tree example where the whole (an ensemble of trees) has less GDF complexity than any of its parts.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-30 13:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表