找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; Second International Edwin R. Hancock,Marcello Pelillo Conference p

[复制链接]
查看: 8241|回复: 69
发表于 2025-3-21 17:36:37 | 显示全部楼层 |阅读模式
书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition
副标题Second International
编辑Edwin R. Hancock,Marcello Pelillo
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; Second International Edwin R. Hancock,Marcello Pelillo Conference p
出版日期Conference proceedings 1999
关键词3D; Animation; Biomathematics; Computer Vision; Energy Minimization; Image segmentation; Markov Random Fie
版次1
doihttps://doi.org/10.1007/3-540-48432-9
isbn_softcover978-3-540-66294-5
isbn_ebook978-3-540-48432-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition影响因子(影响力)




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition影响因子(影响力)学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition网络公开度




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition网络公开度学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition被引频次




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition被引频次学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition读者反馈




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:31:22 | 显示全部楼层
发表于 2025-3-22 01:56:47 | 显示全部楼层
发表于 2025-3-22 05:12:01 | 显示全部楼层
发表于 2025-3-22 10:26:13 | 显示全部楼层
https://doi.org/10.1007/978-3-030-61326-6nce the stability of the DMM and improve the performance of the adaptive process. The accuracy of the proposed approach is demonstrated by experiments on eye model animation. In this paper, we focus our discussion only on the detection, tracking, modeling and animation of eye movements.
发表于 2025-3-22 13:44:26 | 显示全部楼层
发表于 2025-3-22 19:16:48 | 显示全部楼层
Unsupervised Multispectral Image Segmentation Using Generalized Gaussian Noise Modeles of Posterior Marginals (MPM) estimator. The main motivation of the paper is to extend the variety of noise models which results of the distribution mixture on multispectral images. Some results on synthetic and SPOT images validate our approach.
发表于 2025-3-23 00:14:58 | 显示全部楼层
发表于 2025-3-23 01:50:53 | 显示全部楼层
发表于 2025-3-23 05:59:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 11:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表