找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Energy Efficient Computation Offloading in Mobile Edge Computing; Ying Chen,Ning Zhang,Sherman Shen Book 2022 The Editor(s) (if applicable

[复制链接]
楼主: GUAFF
发表于 2025-3-25 03:50:10 | 显示全部楼层
发表于 2025-3-25 07:45:25 | 显示全部楼层
Dynamic Computation Offloading for Energy Efficiency in Mobile Edge Computing,r challenges faced with this problem. For example, the uncertainty of wireless channel states and the dynamics of task arrivals make it very complex to solve this problem. In this chapter, we take advantage of stochastic optimization techniques to solve this problem, and propose the distributed EEDC
发表于 2025-3-25 15:30:40 | 显示全部楼层
Energy Efficient Offloading and Frequency Scaling for Internet of Things Devices,ed into two sub-problems. Then, a Computation Offloading and Frequency Scaling for Energy Efficiency (COFSEE) algorithm for online task offloading and frequency transformation is proposed. Our algorithm can solve optimal subproblems in parallel. We evaluate the performance of COFSEE algorithm throug
发表于 2025-3-25 19:33:10 | 显示全部楼层
发表于 2025-3-25 20:44:29 | 显示全部楼层
Energy-Efficient Multi-Task Multi-Access Computation Offloading via NOMA,annel realizations in the dynamic scenario, this chapter proposes an online algorithm, which is based on deep reinforcement learning (DRL), to efficiently learn the near-optimal offloading solutions for the time-varying channel realizations. Numerical results are provided to validate the proposed la
发表于 2025-3-26 03:21:13 | 显示全部楼层
发表于 2025-3-26 05:20:51 | 显示全部楼层
发表于 2025-3-26 12:07:56 | 显示全部楼层
Soziale Identitäten Jugendlicherng, and proposes the energy-efficient computation offloading solutions. Since the wireless channel state and task request arrival process are stochastic and dynamic, designing a dynamic and energy-efficient task offloading strategy faces severe challenges. This chapter introduces the background and
发表于 2025-3-26 14:37:19 | 显示全部楼层
Degener Theresia,Mogge-Grotjahn Hildegardr challenges faced with this problem. For example, the uncertainty of wireless channel states and the dynamics of task arrivals make it very complex to solve this problem. In this chapter, we take advantage of stochastic optimization techniques to solve this problem, and propose the distributed EEDC
发表于 2025-3-26 17:29:14 | 显示全部楼层
,Das europäische Mehrebenensystem,ed into two sub-problems. Then, a Computation Offloading and Frequency Scaling for Energy Efficiency (COFSEE) algorithm for online task offloading and frequency transformation is proposed. Our algorithm can solve optimal subproblems in parallel. We evaluate the performance of COFSEE algorithm throug
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表