找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Empirical Methods in Natural Language Generation; Data-oriented Method Emiel Krahmer,Mariët Theune Book 2010 Springer-Verlag Berlin Heidelb

[复制链接]
查看: 45950|回复: 58
发表于 2025-3-21 20:06:41 | 显示全部楼层 |阅读模式
书目名称Empirical Methods in Natural Language Generation
副标题Data-oriented Method
编辑Emiel Krahmer,Mariët Theune
视频video
概述Up to date results.Fast conference proceedings.State-of-the-art report
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Empirical Methods in Natural Language Generation; Data-oriented Method Emiel Krahmer,Mariët Theune Book 2010 Springer-Verlag Berlin Heidelb
描述Natural language generation (NLG) is a subfield of natural language processing (NLP) that is often characterized as the study of automatically converting non-linguistic representations (e.g., from databases or other knowledge sources) into coherent natural language text. In recent years the field has evolved substantially. Perhaps the most important new development is the current emphasis on data-oriented methods and empirical evaluation. Progress in related areas such as machine translation, dialogue system design and automatic text summarization and the resulting awareness of the importance of language generation, the increasing availability of suitable corpora in recent years, and the organization of shared tasks for NLG, where different teams of researchers develop and evaluate their algorithms on a shared, held out data set have had a considerable impact on the field, and this book offers the first comprehensive overview of recent empirically oriented NLG research.
出版日期Book 2010
关键词automatic translation; human-human communication; information extraction; information retrieval; knowled
版次1
doihttps://doi.org/10.1007/978-3-642-15573-4
isbn_softcover978-3-642-15572-7
isbn_ebook978-3-642-15573-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Empirical Methods in Natural Language Generation影响因子(影响力)




书目名称Empirical Methods in Natural Language Generation影响因子(影响力)学科排名




书目名称Empirical Methods in Natural Language Generation网络公开度




书目名称Empirical Methods in Natural Language Generation网络公开度学科排名




书目名称Empirical Methods in Natural Language Generation被引频次




书目名称Empirical Methods in Natural Language Generation被引频次学科排名




书目名称Empirical Methods in Natural Language Generation年度引用




书目名称Empirical Methods in Natural Language Generation年度引用学科排名




书目名称Empirical Methods in Natural Language Generation读者反馈




书目名称Empirical Methods in Natural Language Generation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:43:05 | 显示全部楼层
Empirical Methods in Natural Language Generation978-3-642-15573-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 02:28:35 | 显示全部楼层
发表于 2025-3-22 05:22:04 | 显示全部楼层
https://doi.org/10.1007/978-3-642-68264-3nt, readable output. However, traditional knowledge-intensive approaches have been of limited utility in addressing this problem since they cannot be effectively scaled to operate in domain-independent, large-scale applications. Due to this difficulty, existing text-to-text generation systems rarely
发表于 2025-3-22 09:30:32 | 显示全部楼层
发表于 2025-3-22 14:56:15 | 显示全部楼层
发表于 2025-3-22 17:13:02 | 显示全部楼层
发表于 2025-3-22 23:26:37 | 显示全部楼层
发表于 2025-3-23 01:29:00 | 显示全部楼层
Erich Dambacher,Oliver Schöffskiack from the current generation context (e.g. a user and a surface realiser). The model is adaptive and incremental at the turn level, and optimises NLG actions with respect to a data-driven objective function. We study its use in a standard NLG problem: how to present information (in this case a se
发表于 2025-3-23 06:01:53 | 显示全部楼层
Patil Shivprasad Suresh,Anmol,Upendra Sharmaata. One of the challenges these systems face is the generation of geographic descriptions that refer to the location of events or patterns in the data. Based on our studies in the domain of meteorology we present an approach to generating approximate geographic descriptions involving regions, which
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 10:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表