找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Emotion Recognition using Speech Features; K. Sreenivasa Rao,Shashidhar G. Koolagudi Book 2013 Springer Science+Business Media New York 20

[复制链接]
查看: 51722|回复: 38
发表于 2025-3-21 19:33:56 | 显示全部楼层 |阅读模式
书目名称Emotion Recognition using Speech Features
编辑K. Sreenivasa Rao,Shashidhar G. Koolagudi
视频video
概述Discusses complete state-of -art features, models and databases in the context of emotion recognition.Explores implicit and explicit excitation source features for discriminating the emotions.Proposes
丛书名称SpringerBriefs in Speech Technology
图书封面Titlebook: Emotion Recognition using Speech Features;  K. Sreenivasa Rao,Shashidhar G. Koolagudi Book 2013 Springer Science+Business Media New York 20
描述“Emotion Recognition Using Speech Features” provides coverage of emotion-specific features present in speech. The author also discusses suitable models for capturing emotion-specific information for distinguishing different emotions.  The content of this book is important for designing and developing  natural and sophisticated speech systems. In this Brief, Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about exploiting multiple evidences derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Features includes discussion of:• Global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information; • Exploiting complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance; • Proposed multi-stage and hybrid models for improving the emotion recognition performance. This brief is for researchers
出版日期Book 2013
关键词Emotion Recognition; Emotion-discriminative Information; Emotion-specific Information; Excitation Sourc
版次1
doihttps://doi.org/10.1007/978-1-4614-5143-3
isbn_softcover978-1-4614-5142-6
isbn_ebook978-1-4614-5143-3Series ISSN 2191-737X Series E-ISSN 2191-7388
issn_series 2191-737X
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

书目名称Emotion Recognition using Speech Features影响因子(影响力)




书目名称Emotion Recognition using Speech Features影响因子(影响力)学科排名




书目名称Emotion Recognition using Speech Features网络公开度




书目名称Emotion Recognition using Speech Features网络公开度学科排名




书目名称Emotion Recognition using Speech Features被引频次




书目名称Emotion Recognition using Speech Features被引频次学科排名




书目名称Emotion Recognition using Speech Features年度引用




书目名称Emotion Recognition using Speech Features年度引用学科排名




书目名称Emotion Recognition using Speech Features读者反馈




书目名称Emotion Recognition using Speech Features读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:23:25 | 显示全部楼层
2191-737X systems and prosodic features in order to enhance the emotion recognition performance; • Proposed multi-stage and hybrid models for improving the emotion recognition performance. This brief is for researchers 978-1-4614-5142-6978-1-4614-5143-3Series ISSN 2191-737X Series E-ISSN 2191-7388
发表于 2025-3-22 02:20:14 | 显示全部楼层
Henning F. Harmuth,Konstantin A. Lukinmotions from psychological and engineering view points. Influence of emotions on the characteristics of speech production system is briefly mentioned. Role of various features extracted from excitation source, vocal tract system and prosody, are discussed in the context of developing various speech
发表于 2025-3-22 04:33:24 | 显示全部楼层
发表于 2025-3-22 08:55:07 | 显示全部楼层
H. J. Goldschmidt D.Sc., F.Inst.P., F.I.M.urce information for emotion recognition is illustrated by demonstrating the speech files with source information alone. Details of extraction of proposed excitation source features ((i) Sequence of LP residual samples, (ii) LP residual phase, (iii) Epoch parameters and (iv) Glottal pulse parameters
发表于 2025-3-22 14:17:36 | 显示全部楼层
Extracellular Matrix and Cardiac Remodelingpstral coefficients (LPCCs) and mel frequency cepstral coefficients (MFCCs) are used as the correlates of vocal tract information for discriminating the emotions. In addition to LPCCs and MFCCs, formant related features are also explored in this work for recognizing emotions from speech. Extraction
发表于 2025-3-22 20:34:59 | 显示全部楼层
B. Stea,D. Shimm,J. Kittelson,T. Cetaseatures to recognize the emotions is illustrated using the gross statistics and time varying patterns of prosodic parameters. Global prosodic features representing the gross statistics of prosody and local prosodic features representing the finer variations in prosody are introduced in this chapter
发表于 2025-3-22 23:50:59 | 显示全部楼层
发表于 2025-3-23 02:55:34 | 显示全部楼层
Emotion Recognition using Speech Features978-1-4614-5143-3Series ISSN 2191-737X Series E-ISSN 2191-7388
发表于 2025-3-23 08:26:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 14:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表