找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Emerging Paradigms in Machine Learning; Sheela Ramanna,Lakhmi C Jain,Robert J. Howlett Book 2013 Springer-Verlag Berlin Heidelberg 2013 Em

[复制链接]
楼主: 公款
发表于 2025-3-23 12:07:07 | 显示全部楼层
发表于 2025-3-23 17:33:09 | 显示全部楼层
2190-3018 lding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.   .978-3-642-43574-4978-3-642-28699-5Series ISSN 2190-3018 Series E-ISSN 2190-3026
发表于 2025-3-23 19:17:26 | 显示全部楼层
Sheela Ramanna,Lakhmi C Jain,Robert J. HowlettState of the art of emerging paradigms in machine learning including some real world applications.Latest research in machine learning and biologically-based techniques for the design and implementatio
发表于 2025-3-23 23:28:37 | 显示全部楼层
发表于 2025-3-24 04:30:18 | 显示全部楼层
https://doi.org/10.1007/978-3-642-28699-5Emerging paradigms; Emerging paradigms; Intelligent systems; Intelligent systems; Machine learning; Machi
发表于 2025-3-24 09:17:15 | 显示全部楼层
,Enige Grondlijnen van Abélard’s Theologie,esian Learning, Decision Trees, Granular Computing, Fuzzy and Rough Sets, Inductive Logic Programming, Reinforcement Learning, Neural Networks and Support Vector Machines. In addition, challenges in ML such as imbalanced data, perceptual computing, and pattern recognition of data which is episodic as well as temporal are also highlighted.
发表于 2025-3-24 11:59:46 | 显示全部楼层
发表于 2025-3-24 17:15:29 | 显示全部楼层
Emerging Paradigms in Machine Learning: An Introduction,esian Learning, Decision Trees, Granular Computing, Fuzzy and Rough Sets, Inductive Logic Programming, Reinforcement Learning, Neural Networks and Support Vector Machines. In addition, challenges in ML such as imbalanced data, perceptual computing, and pattern recognition of data which is episodic as well as temporal are also highlighted.
发表于 2025-3-24 22:50:11 | 显示全部楼层
发表于 2025-3-25 01:38:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 02:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表