找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Embedding Knowledge Graphs with RDF2vec; Heiko Paulheim,Petar Ristoski,Jan Portisch Book 2023 The Editor(s) (if applicable) and The Author

[复制链接]
查看: 21065|回复: 37
发表于 2025-3-21 18:31:24 | 显示全部楼层 |阅读模式
书目名称Embedding Knowledge Graphs with RDF2vec
编辑Heiko Paulheim,Petar Ristoski,Jan Portisch
视频video
概述Explains what are knowledge graph embeddings are and how they can be computed.Demonstrates how RDF2vec is used as a building block in AI applications.Discusses which variants of RDF2vec exist and when
丛书名称Synthesis Lectures on Data, Semantics, and Knowledge
图书封面Titlebook: Embedding Knowledge Graphs with RDF2vec;  Heiko Paulheim,Petar Ristoski,Jan Portisch Book 2023 The Editor(s) (if applicable) and The Author
描述.This book explains the ideas behind one of the most well-known methods for knowledge graph embedding of transformations to compute vector representations from a graph, known as RDF2vec. The authors describe its usage in practice, from reusing pre-trained knowledge graph embeddings to training tailored vectors for a knowledge graph at hand. They also demonstrate different extensions of RDF2vec and how they affect not only the downstream performance, but also the expressivity of the resulting vector representation, and analyze the resulting vector spaces and the semantic properties they encode..
出版日期Book 2023
关键词Data mining; knowledge representation in AI; Knowledge Graph Embeddings; dynamic knowledge graphs; ontol
版次1
doihttps://doi.org/10.1007/978-3-031-30387-6
isbn_softcover978-3-031-30389-0
isbn_ebook978-3-031-30387-6Series ISSN 2691-2023 Series E-ISSN 2691-2031
issn_series 2691-2023
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Embedding Knowledge Graphs with RDF2vec影响因子(影响力)




书目名称Embedding Knowledge Graphs with RDF2vec影响因子(影响力)学科排名




书目名称Embedding Knowledge Graphs with RDF2vec网络公开度




书目名称Embedding Knowledge Graphs with RDF2vec网络公开度学科排名




书目名称Embedding Knowledge Graphs with RDF2vec被引频次




书目名称Embedding Knowledge Graphs with RDF2vec被引频次学科排名




书目名称Embedding Knowledge Graphs with RDF2vec年度引用




书目名称Embedding Knowledge Graphs with RDF2vec年度引用学科排名




书目名称Embedding Knowledge Graphs with RDF2vec读者反馈




书目名称Embedding Knowledge Graphs with RDF2vec读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:47:37 | 显示全部楼层
From Word Embeddings to Knowledge Graph Embeddings,n 2013 – and embeddings have gathered a tremendous uptake in the natural language processing community since then. Since RDF2vec is based on word2vec, we take a closer look at word2vec in this chapter. We explain how word2vec has been developed to represent words as vectors, and we discuss how this
发表于 2025-3-22 04:26:14 | 显示全部楼层
Benchmarking Knowledge Graph Embeddings,er introduces a few datasets and three common benchmarks for embedding methods—i.e., SW4ML, GEval, and DLCC—and shows how to use them for comparing different variants of RDF2vec. The novel DLCC benchmark allows us to take a closer look at what RDF2vec vectors actually represent, and to analyze what
发表于 2025-3-22 08:09:32 | 显示全部楼层
Tweaking RDF2vec,weaks encompass various steps of the pipeline: reasoners have been used to preprocess the knowledge graph and add implicit knowledge. Different strategies for changing the walk strategy have been proposed, starting from injecting edge weights to biasing the walks towards higher or lower degree nodes
发表于 2025-3-22 08:53:13 | 显示全部楼层
发表于 2025-3-22 15:46:00 | 显示全部楼层
Link Prediction in Knowledge Graphs (and its Relation to RDF2vec),ification, which we have considered so far). In this chapter, we give a very brief overview of the main embedding techniques for link prediction and flesh out the main differences between the well-known link prediction technique TransE and RDF2vec. Moreover, we show how RDF2vec can be used for link
发表于 2025-3-22 17:58:21 | 显示全部楼层
发表于 2025-3-22 23:34:03 | 显示全部楼层
发表于 2025-3-23 02:23:47 | 显示全部楼层
Sushil Kumar,Priyanka,Upendra Kumaring tasks, and we show classic feature extraction or propositionalization techniques, which are the historical predecessor of knowledge graph embeddings, and we show how these techniques are used for basic node classification tasks.
发表于 2025-3-23 05:59:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 10:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表