找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Embedded Deep Learning; Algorithms, Architec Bert Moons,Daniel Bankman,Marian Verhelst Book 2019 Springer Nature Switzerland AG 2019 Deep L

[复制链接]
查看: 51246|回复: 42
发表于 2025-3-21 18:00:16 | 显示全部楼层 |阅读模式
书目名称Embedded Deep Learning
副标题Algorithms, Architec
编辑Bert Moons,Daniel Bankman,Marian Verhelst
视频video
概述Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices.Discusses the optimization of neural networks for embedded deploym
图书封面Titlebook: Embedded Deep Learning; Algorithms, Architec Bert Moons,Daniel Bankman,Marian Verhelst Book 2019 Springer Nature Switzerland AG 2019 Deep L
描述.This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning..Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;.Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes;.Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;.Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts..
出版日期Book 2019
关键词Deep Learning for Computer Architects; Embedded Deep Neural Networks; optimization of a neural network
版次1
doihttps://doi.org/10.1007/978-3-319-99223-5
isbn_softcover978-3-030-07577-4
isbn_ebook978-3-319-99223-5
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Embedded Deep Learning影响因子(影响力)




书目名称Embedded Deep Learning影响因子(影响力)学科排名




书目名称Embedded Deep Learning网络公开度




书目名称Embedded Deep Learning网络公开度学科排名




书目名称Embedded Deep Learning被引频次




书目名称Embedded Deep Learning被引频次学科排名




书目名称Embedded Deep Learning年度引用




书目名称Embedded Deep Learning年度引用学科排名




书目名称Embedded Deep Learning读者反馈




书目名称Embedded Deep Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:24:57 | 显示全部楼层
Optimized Hierarchical Cascaded Processing,discusses a first . solution for this problem. In this chapter, the wake-up-based detection scenario is generalized to ., where a hierarchy of increasingly complex classifiers, each designed and trained for a specific sub-task, is used to minimize the overall system’s energy cost. An optimal hierarc
发表于 2025-3-22 03:14:43 | 显示全部楼层
Hardware-Algorithm Co-optimizations,discusses hardware aware . solutions for this problem. As an introduction to this topic, this chapter gives an overview of existing work in hardware and neural network co-optimizations. Two own contributions in hardware-algorithm optimization are discussed and compared: network quantization either a
发表于 2025-3-22 04:42:45 | 显示全部楼层
发表于 2025-3-22 11:01:27 | 显示全部楼层
发表于 2025-3-22 13:10:05 | 显示全部楼层
发表于 2025-3-22 18:21:20 | 显示全部楼层
Conclusions, Contributions, and Future Work,ained wearable edge devices. Although SotA in many typical machine-learning tasks, deep learning algorithms are also very costly in terms of energy consumption, due to their large amount of required computations and huge model sizes. Because of this, deep learning applications on battery-constrained
发表于 2025-3-22 21:52:42 | 显示全部楼层
发表于 2025-3-23 01:57:05 | 显示全部楼层
发表于 2025-3-23 08:29:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 09:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表