找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Functions; Komaravolu Chandrasekharan Textbook 1985 Springer-Verlag Berlin Heidelberg 1985 Complex analysis.Functions.Meromorphic

[复制链接]
楼主: OBESE
发表于 2025-3-25 06:29:38 | 显示全部楼层
发表于 2025-3-25 09:12:00 | 显示全部楼层
发表于 2025-3-25 12:19:06 | 显示全部楼层
发表于 2025-3-25 16:27:30 | 显示全部楼层
发表于 2025-3-25 21:37:19 | 显示全部楼层
Periods of meromorphic functions,We assume as known the fundamentals of complex analysis, including the basic properties of . and of . functions in the . The meromorphic functions defined on an ., set in the complex plane form a . Unless otherwise qualified, a meromorphic function is supposed to mean a function meromorphic in the whole complex plane.
发表于 2025-3-26 00:49:55 | 显示全部楼层
General properties of elliptic functions,Given an elliptic function ., let (. .) be a pair of . periods for its period-lattice {. .}, where m, . = 0, ±1, ±2,....
发表于 2025-3-26 04:52:48 | 显示全部楼层
The zeta-function and the sigma-function of Weierstrass,Weierstrass’s ζ-function is a meromorphic function, which has . poles, with residues equal to one, at all points which correspond to the periods of Weierstrass’s ℘-function. It is . elliptic. But every elliptic function can be expressed in terms of ζ and its derivatives; in fact ζ.(.)= -℘(.).
发表于 2025-3-26 10:11:35 | 显示全部楼层
发表于 2025-3-26 15:45:57 | 显示全部楼层
The law of quadratic reciprocity,As a limiting case of the transformation formula connecting the theta-function .(., .) with ., we shall prove a transformation formula for exponential sums (Theorem 1), which yields, as a special case, a reciprocity formula for . (Corollary 2) which, in turn, enables us not only to evaluate . but to prove the law of quadratic reciprocity.
发表于 2025-3-26 17:27:55 | 显示全部楼层
,Dedekind’s η-function and Euler’s theorem on pentagonal numbers,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 11:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表