找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Curves, Modular Forms and Cryptography; Proceedings of the A Ashwani K. Bhandari,D. S. Nagaraj,T. N. Venkataram Conference proceed

[复制链接]
楼主: 不幸的你
发表于 2025-3-23 10:49:09 | 显示全部楼层
发表于 2025-3-23 17:12:32 | 显示全部楼层
,Gewöhnliche Differentialgleichungen,Consider the linear group .(ℚ) which consists of all 2 × 2 matrices of positive determinant having entries in ℚ, the field of rational numbers. The group law is the multiplication of matrices. Let . be the Poincaré upper half-plane consisting of complex numbers with positive imaginary part.
发表于 2025-3-23 18:27:06 | 显示全部楼层
Elliptic Curves over Finite FieldsJacobi was the first person to suggest (in 1835) using the group law on a cubic curve .. The chord-tangent method does give rise to a group law if a point is fixed as the zero element. This can be done over any field over which there is a rational point.
发表于 2025-3-23 23:14:44 | 显示全部楼层
发表于 2025-3-24 02:22:09 | 显示全部楼层
发表于 2025-3-24 07:21:34 | 显示全部楼层
发表于 2025-3-24 12:21:17 | 显示全部楼层
Siegel’s Theorem: Finiteness of Integral PointsIn the article of T. N. Shorey in this volume, Liouville’s inequality and a non-trivial sharpening of it due to Thue have been established. Further, in Theorem 3 of that article, the above sharpening of Thue is used to show that a Diophantine equation belonging to a certain class has only finitely many solutions.
发表于 2025-3-24 16:01:12 | 显示全部楼层
发表于 2025-3-24 23:05:32 | 显示全部楼层
Elliptic FunctionsRecall that a non empty subset S of a topological space . is called ., if . we have the following equivalent characterization.
发表于 2025-3-25 01:09:57 | 显示全部楼层
An Introduction to Modular Forms and Hecke OperatorsConsider the linear group .(ℚ) which consists of all 2 × 2 matrices of positive determinant having entries in ℚ, the field of rational numbers. The group law is the multiplication of matrices. Let . be the Poincaré upper half-plane consisting of complex numbers with positive imaginary part.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 22:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表