找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Boundary Problems for Dirac Operators; Bernhelm Booß-Bavnbek,Krzysztof P. Wojciechowski Book 1993 Springer Science+Business Media

[复制链接]
楼主: DIGN
发表于 2025-3-26 21:45:31 | 显示全部楼层
Spectral Projections of Dirac OperatorsWe account for the construction and the basic properties of the spectral projections associated with the tangential part of a Dirac operator.
发表于 2025-3-27 01:42:45 | 显示全部楼层
Pseudo-Differential GrassmanniansThe homotopy groups of the space of pseudo-differential projections with given principal symbol are computed. Criteria are given for two projections belonging to the same connected component.
发表于 2025-3-27 07:10:51 | 显示全部楼层
发表于 2025-3-27 13:28:21 | 显示全部楼层
发表于 2025-3-27 14:23:53 | 显示全部楼层
发表于 2025-3-27 18:40:14 | 显示全部楼层
Probability Logic as a Fuzzy Logic or without boundary), we obtain the Clifford bundle .ℓ(.) ≔ .ℓ(., .). We show that there exists a connection . for any bundle . of complex left modules over .ℓ(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
发表于 2025-3-27 22:16:30 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-3028-1ng even to odd spinors which is exactly the Cauchy-Riemann operator; the Dirac operator on .-valued functions; and the quaternion analogue for the Cauchy-Riemann operator and its expression by Pauli matrices.
发表于 2025-3-28 05:01:17 | 显示全部楼层
发表于 2025-3-28 07:42:31 | 显示全部楼层
Clifford Bundles and Compatible Connections or without boundary), we obtain the Clifford bundle .ℓ(.) ≔ .ℓ(., .). We show that there exists a connection . for any bundle . of complex left modules over .ℓ(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
发表于 2025-3-28 11:46:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 13:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表