找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under e

[复制链接]
楼主: grateful
发表于 2025-3-25 05:57:59 | 显示全部楼层
发表于 2025-3-25 08:02:57 | 显示全部楼层
发表于 2025-3-25 13:53:03 | 显示全部楼层
,Numerical Analysis  of Bifurcations,l routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead, we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed point
发表于 2025-3-25 17:50:56 | 显示全部楼层
,Kontrast und Signal-zu-Rausch-Verhältnis,This chapter introduces some basic terminology. First, we define a . and give several examples, including symbolic dynamics. Then we introduce the notions of ., and their .. As we shall see while analyzing the ., invariant sets can have very complex structures.
发表于 2025-3-25 22:22:26 | 显示全部楼层
发表于 2025-3-26 04:03:16 | 显示全部楼层
https://doi.org/10.1007/978-3-642-66120-4The list of possible bifurcations in multidimensional systems is not exhausted by those studied in the previous chapters. Actually, even the complete list of all generic one-parameter bifurcations is unknown.
发表于 2025-3-26 06:23:20 | 显示全部楼层
发表于 2025-3-26 11:41:49 | 显示全部楼层
One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems,In this chapter, which is organized very much like Chap. 3, we present bifurcation conditions defining the simplest bifurcations of fixed points in .-dimensional discrete-time dynamical systems: the fold, the flip, and the Neimark-Sacker bifurcations.
发表于 2025-3-26 15:09:34 | 显示全部楼层
发表于 2025-3-26 20:09:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 02:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表