找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Electronic Participation; 13th IFIP WG 8.5 Int Noella Edelmann,Csaba Csáki,Efthimios Tambouris Conference proceedings 2021 IFIP Internation

[复制链接]
查看: 40639|回复: 50
发表于 2025-3-21 16:15:33 | 显示全部楼层 |阅读模式
书目名称Electronic Participation
副标题13th IFIP WG 8.5 Int
编辑Noella Edelmann,Csaba Csáki,Efthimios Tambouris
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Electronic Participation; 13th IFIP WG 8.5 Int Noella Edelmann,Csaba Csáki,Efthimios Tambouris Conference proceedings 2021 IFIP Internation
描述This book constitutes the proceedings of the 13th IFIP WG 8.5 International Conference on Electronic Participation, ePart 2021, held in Granada, Spain, in September 2021, in conjunction with IFIP WG 8.5 Electronic Government (EGOV 2021), the Conference for E-Democracy and Open Government Conference (CeDEM 2021). .The 16 full papers presented were carefully reviewed and selected from 37 submissions. The papers are clustered under the following topical sections: digital participation, digital society, digital government and legal issues..
出版日期Conference proceedings 2021
关键词artificial intelligence; computer networks; computer systems; digital government; e-participation; electr
版次1
doihttps://doi.org/10.1007/978-3-030-82824-0
isbn_softcover978-3-030-82823-3
isbn_ebook978-3-030-82824-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightIFIP International Federation for Information Processing 2021
The information of publication is updating

书目名称Electronic Participation影响因子(影响力)




书目名称Electronic Participation影响因子(影响力)学科排名




书目名称Electronic Participation网络公开度




书目名称Electronic Participation网络公开度学科排名




书目名称Electronic Participation被引频次




书目名称Electronic Participation被引频次学科排名




书目名称Electronic Participation年度引用




书目名称Electronic Participation年度引用学科排名




书目名称Electronic Participation读者反馈




书目名称Electronic Participation读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:45:58 | 显示全部楼层
Discovering Sense of Community Enabling Factors for Public and Government Staff in Online Public Engenging. In a new conceptualization of the theory of . (SoC), this paper explores the dynamics of online government responsiveness, using dimensions of SoC to identify how those components . from both the perspective of government staff and public users. This study reports from two case studies desig
发表于 2025-3-22 00:32:06 | 显示全部楼层
发表于 2025-3-22 08:14:57 | 显示全部楼层
Researching Digital Society: Using Data-Mining to Identify Relevant Themes from an Open Access Journ methods and qualitative analysis, the scholarly output and the meta-data of the Open Access eJournal of e-Democracy and Open Government during the time interval 2009–2020 was analysed. Our study was able to identify the most prominent research topics (defined as thematic clusters) of the journal, t
发表于 2025-3-22 11:40:57 | 显示全部楼层
Whose Agenda Is It Anyway? The Effect of Disinformation on COVID-19 Vaccination Hesitancy in the Netroad implications for public health. This research was conducted to investigate a possible connection between the amount of vaccination-related disinformation and the willingness among the Dutch population to get vaccinated. The contribution of this research is 1) developing a tool-supported approac
发表于 2025-3-22 15:01:59 | 显示全部楼层
A Conceptual Model for Approaching the Design of Anti-disinformation Toolsd. The multifaceted nature of the phenomenon requires a set of tools that can respond effectively, and can deal with the different ways in which disinformation can present itself, such as text, images, and videos, the agents responsible for spreading it, and the various platforms on which incorrect
发表于 2025-3-22 20:20:07 | 显示全部楼层
发表于 2025-3-23 00:54:27 | 显示全部楼层
发表于 2025-3-23 02:47:33 | 显示全部楼层
发表于 2025-3-23 09:32:07 | 显示全部楼层
Accountable Federated Machine Learning in Government: Engineering and Management Insightsearning techniques requires the collection and storage of enough training data in a central place. Unfortunately, due to legislative and jurisdictional constraints, data in a central place is scarce and training a model becomes unfeasible. Against this backdrop, federated machine learning, a techniq
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 01:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表