找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Electromagnetic Fields and Waves in Fractional Dimensional Space; Muhammad Zubair,Muhammad Junaid Mughal,Qaisar Abba Book 2012 The Editor(

[复制链接]
楼主: Annihilate
发表于 2025-3-25 05:51:36 | 显示全部楼层
发表于 2025-3-25 09:49:05 | 显示全部楼层
Introduction, fills the Euclidean space in which it lies. Since, a medium composed of such fractal objects can be considered as non-integer dimensional fractal media, the analytical results of this work provide the necessary tools for analyzing the behavior of electromagnetic fields and waves in it.
发表于 2025-3-25 13:37:36 | 显示全部楼层
发表于 2025-3-25 17:25:23 | 显示全部楼层
Electromagnetic Wave Propagation in Fractional Space,ectively describe the wave propagation phenomenon in fractal media. In this chapter, exact solutions of different forms of wave equation in .-dimensional fractional space are provided, which describe the phenomenon of electromagnetic wave propagation in fractional space.
发表于 2025-3-25 21:09:43 | 显示全部楼层
2191-530X ents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves.  It provides demonstrates the advantages in studying  the behavior of electromagnetic fields and waves in fractal media. .The book presents novel fractional space generalization of the differenti
发表于 2025-3-26 00:35:43 | 显示全部楼层
Eine praxisorientierte Fortbildungsreihebeen worked out in fractional space. The differential electromagnetic equations in fractional space, established in this chapter, provide a basis for application of the concept of fractional space in practical electromagnetic wave propagation and scattering problems in fractal media.
发表于 2025-3-26 04:18:46 | 显示全部楼层
发表于 2025-3-26 11:00:34 | 显示全部楼层
发表于 2025-3-26 13:57:43 | 显示全部楼层
2191-530X d vector differential operators, the classical Maxwell‘s electromagnetic equations are worked out. The Laplace‘s, Poisson‘s and Helmholtz‘s equations in fractional space are derived by using modified vector differential operators.978-3-642-25357-7978-3-642-25358-4Series ISSN 2191-530X Series E-ISSN 2191-5318
发表于 2025-3-26 20:39:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表