找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Electromagnetic Brain Imaging; A Bayesian Perspecti Kensuke Sekihara,Srikantan S. Nagarajan Textbook 2015 Springer International Publishing

[复制链接]
查看: 34546|回复: 40
发表于 2025-3-21 18:19:17 | 显示全部楼层 |阅读模式
书目名称Electromagnetic Brain Imaging
副标题A Bayesian Perspecti
编辑Kensuke Sekihara,Srikantan S. Nagarajan
视频video
概述Provides a theoretical framework for source imaging methodology.Specific focus on Bayesian algorithms.Unique approach to the recent advances.Includes supplementary material:
图书封面Titlebook: Electromagnetic Brain Imaging; A Bayesian Perspecti Kensuke Sekihara,Srikantan S. Nagarajan Textbook 2015 Springer International Publishing
描述.This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging..
出版日期Textbook 2015
关键词Bayesian algorithms; Brain source reconstruction methods using MEG and EEG; Electromagnetic brain imag
版次1
doihttps://doi.org/10.1007/978-3-319-14947-9
isbn_softcover978-3-319-35643-3
isbn_ebook978-3-319-14947-9
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Electromagnetic Brain Imaging影响因子(影响力)




书目名称Electromagnetic Brain Imaging影响因子(影响力)学科排名




书目名称Electromagnetic Brain Imaging网络公开度




书目名称Electromagnetic Brain Imaging网络公开度学科排名




书目名称Electromagnetic Brain Imaging被引频次




书目名称Electromagnetic Brain Imaging被引频次学科排名




书目名称Electromagnetic Brain Imaging年度引用




书目名称Electromagnetic Brain Imaging年度引用学科排名




书目名称Electromagnetic Brain Imaging读者反馈




书目名称Electromagnetic Brain Imaging读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:57:07 | 显示全部楼层
Zeolithe mit schwankendem SiO2-GehaltIn this chapter, we provide a detailed description of an algorithm for electromagnetic brain imaging, called the Champagne algorithm [., .].
发表于 2025-3-22 00:55:57 | 显示全部楼层
C. Doelter,Emil Baur,M. Dittrich,L. JesserThis chapter describes Bayesian factor analysis (BFA), which is a technique that can decompose multiple sensor time courses into time courses of independent factor activities, where the number of factors is much smaller than the number of sensors.
发表于 2025-3-22 08:14:23 | 显示全部楼层
G. d’Achiardi,R. Amberg,E. ZschimmerMagnetoencephalography (MEG) and related electroencephalography (EEG) use an array of sensors to take electromagnetic field (or voltage) measurements from on or near the scalp surface with excellent temporal resolution.
发表于 2025-3-22 12:05:46 | 显示全部楼层
Lagerung und Belastung der Modelle,There has been tremendous interest in estimating the functional connectivity of neuronal activities across different brain regions using electromagnetic brain imaging.
发表于 2025-3-22 16:15:09 | 显示全部楼层
,Rechenprogramme für die Netzplantechnik,This chapter reviews the methodology for estimating causal relationships among cortical activities in MEG/EEG source space analysis.
发表于 2025-3-22 18:35:13 | 显示全部楼层
https://doi.org/10.1007/978-3-642-50784-7Neural oscillations across multiple frequency bands have consistently been observed in EEG and MEG recordings.
发表于 2025-3-22 21:37:49 | 显示全部楼层
发表于 2025-3-23 04:52:13 | 显示全部楼层
Sparse Bayesian (Champagne) Algorithm,In this chapter, we provide a detailed description of an algorithm for electromagnetic brain imaging, called the Champagne algorithm [., .].
发表于 2025-3-23 05:37:03 | 显示全部楼层
Bayesian Factor Analysis: A Versatile Framework for Denoising, Interference Suppression, and SourceThis chapter describes Bayesian factor analysis (BFA), which is a technique that can decompose multiple sensor time courses into time courses of independent factor activities, where the number of factors is much smaller than the number of sensors.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 15:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表