找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[复制链接]
查看: 30854|回复: 50
发表于 2025-3-21 17:55:05 | 显示全部楼层 |阅读模式
书目名称Effective Kan Fibrations in Simplicial Sets
编辑Benno van den Berg,Eric Faber
视频video
概述Contributes to the emerging area of homotopy type theory.Provides new effective foundations for simplicial homotopy theory.Light on prerequisites (only basic category theory is required)
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Effective Kan Fibrations in Simplicial Sets;  Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde
描述This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky’s model of univalent type theory in simplicial sets.
出版日期Book 2022
关键词Simplicial Sets; Homotopy Theory; Constructive Mathematics; Homotopy Type Theory; Kan Complexes
版次1
doihttps://doi.org/10.1007/978-3-031-18900-5
isbn_softcover978-3-031-18899-2
isbn_ebook978-3-031-18900-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Effective Kan Fibrations in Simplicial Sets影响因子(影响力)




书目名称Effective Kan Fibrations in Simplicial Sets影响因子(影响力)学科排名




书目名称Effective Kan Fibrations in Simplicial Sets网络公开度




书目名称Effective Kan Fibrations in Simplicial Sets网络公开度学科排名




书目名称Effective Kan Fibrations in Simplicial Sets被引频次




书目名称Effective Kan Fibrations in Simplicial Sets被引频次学科排名




书目名称Effective Kan Fibrations in Simplicial Sets年度引用




书目名称Effective Kan Fibrations in Simplicial Sets年度引用学科排名




书目名称Effective Kan Fibrations in Simplicial Sets读者反馈




书目名称Effective Kan Fibrations in Simplicial Sets读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:19:42 | 显示全部楼层
发表于 2025-3-22 03:08:01 | 显示全部楼层
发表于 2025-3-22 06:32:27 | 显示全部楼层
发表于 2025-3-22 11:27:41 | 显示全部楼层
发表于 2025-3-22 16:09:24 | 显示全部楼层
发表于 2025-3-22 17:09:34 | 显示全部楼层
发表于 2025-3-22 21:17:03 | 显示全部楼层
https://doi.org/10.1007/978-3-662-41254-1In this chapter we embark on the study of the effective Kan fibrations in simplicial sets defined using the dominance and symmetric Moore structure on simplicial sets that we established in the previous chapters. The main result of this chapter is that these effective Kan fibrations are cofibrantly generated by a small triple category.
发表于 2025-3-23 04:29:22 | 显示全部楼层
Als das Digitale noch Hardware war,In this chapter we show that effective Kan fibration form a local notion of fibred structure. In addition we show that they coincide the usual Kan fibrations if we work in a classical metatheory.
发表于 2025-3-23 08:15:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 10:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表