找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ecotoxicological QSARs; Kunal Roy Book 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020 Predictive toxicology.Ecoto

[复制链接]
查看: 47780|回复: 58
发表于 2025-3-21 17:49:05 | 显示全部楼层 |阅读模式
书目名称Ecotoxicological QSARs
编辑Kunal Roy
视频video
概述Focuses on computational modeling of the ecotoxicity of chemicals.Features practical advice for conducting QSAR research.Presents methods, protocols, case studies, and more
丛书名称Methods in Pharmacology and Toxicology
图书封面Titlebook: Ecotoxicological QSARs;  Kunal Roy Book 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020 Predictive toxicology.Ecoto
描述This volume focuses on computational modeling of the ecotoxicity of chemicals and presents applications of quantitative structure–activity relationship models (QSARs) in the predictive toxicology field in a regulatory context. The extensive book covers a variety of protocols for descriptor computation, data curation, feature selection, learning algorithms, validation of models, applicability domain assessment, confidence estimation for predictions, and much more, as well as case studies and literature reviews on a number of hot topics. Written for the .Methods in Pharmacology and Toxicology. series, chapters include the kind of practical advice that is essential for researchers everywhere. .Authoritative and comprehensive, .Ecotoxicological QSARs. is an ideal source to update readers in the field with current practices and introduce to them new developments and should therefore be very useful for researchers in academia, industries, and regulatory bodies..
出版日期Book 2020
关键词Predictive toxicology; Ecotoxicological risk assessment; Pharmaceuticals; Industrial chemicals; Data cur
版次1
doihttps://doi.org/10.1007/978-1-0716-0150-1
isbn_softcover978-1-0716-0152-5
isbn_ebook978-1-0716-0150-1Series ISSN 1557-2153 Series E-ISSN 1940-6053
issn_series 1557-2153
copyrightSpringer Science+Business Media, LLC, part of Springer Nature 2020
The information of publication is updating

书目名称Ecotoxicological QSARs影响因子(影响力)




书目名称Ecotoxicological QSARs影响因子(影响力)学科排名




书目名称Ecotoxicological QSARs网络公开度




书目名称Ecotoxicological QSARs网络公开度学科排名




书目名称Ecotoxicological QSARs被引频次




书目名称Ecotoxicological QSARs被引频次学科排名




书目名称Ecotoxicological QSARs年度引用




书目名称Ecotoxicological QSARs年度引用学科排名




书目名称Ecotoxicological QSARs读者反馈




书目名称Ecotoxicological QSARs读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:07:25 | 显示全部楼层
发表于 2025-3-22 01:16:41 | 显示全部楼层
Importance of Data Curation in QSAR Studies Especially While Modeling Large-Size Datasetse, nevertheless. This chapter reviews and discusses the several data curation tools normally applied for such endeavors, paying special attention to those that can be used to semiautomate the curation process, like resorting to a workflow by employing the freely available KNIME software.
发表于 2025-3-22 08:35:13 | 显示全部楼层
ChatGPT in der Unternehmenspraxisgorithms is a great approach for assessing toxicity to generate predictive models involving QSAR. Several studies are being conducted not only comparing ML techniques but applying them to generate potentially predictive models and excellent performances.
发表于 2025-3-22 10:01:35 | 显示全部楼层
Use of Machine Learning and Classical QSAR Methods in Computational Ecotoxicologygorithms is a great approach for assessing toxicity to generate predictive models involving QSAR. Several studies are being conducted not only comparing ML techniques but applying them to generate potentially predictive models and excellent performances.
发表于 2025-3-22 13:57:20 | 显示全部楼层
发表于 2025-3-22 18:57:36 | 显示全部楼层
https://doi.org/10.1057/9780230378636is chapter, we present a recompilation of recognized regulations and guidelines, as well as software and tools, used in grouping and read-across for ecotoxicology-related endpoints. Additionally, an exemplary read-across study for the bioconcentration factor prediction is included.
发表于 2025-3-22 23:57:46 | 显示全部楼层
发表于 2025-3-23 01:39:20 | 显示全部楼层
发表于 2025-3-23 07:37:27 | 显示全部楼层
978-1-0716-0152-5Springer Science+Business Media, LLC, part of Springer Nature 2020
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 18:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表