找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ECML PKDD 2018 Workshops; Nemesis 2018, UrbRea Carlos Alzate,Anna Monreale,Mathieu Sinn Conference proceedings 2019 Springer Nature Switzer

[复制链接]
查看: 38105|回复: 53
发表于 2025-3-21 16:17:46 | 显示全部楼层 |阅读模式
书目名称ECML PKDD 2018 Workshops
副标题Nemesis 2018, UrbRea
编辑Carlos Alzate,Anna Monreale,Mathieu Sinn
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: ECML PKDD 2018 Workshops; Nemesis 2018, UrbRea Carlos Alzate,Anna Monreale,Mathieu Sinn Conference proceedings 2019 Springer Nature Switzer
描述This book constitutes revised selected papers from the workshops Nemesis, UrbReas, SoGood, IWAISe, and Green Data Mining, held at the 18.th. European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. . The 20 papers presented in this volume were carefully reviewed and selected from a total of 32 submissions. ..The workshops included are:.Nemesis 2018: First Workshop on Recent Advances in Adversarial Machine Learning..UrbReas 2018: First International Workshop on Urban Reasoning from Complex Challenges in Cities.SoGood 2018: Third Workshop on Data Science for Social Good..IWAISe 2018: Second International Workshop on Artificial Intelligence in Security.Green Data Mining 2018: First International Workshop on Energy Efficient Data Mining and Knowledge Discovery.
出版日期Conference proceedings 2019
关键词adversarial attacks; artificial intelligence; data science; green computing; image processing; image reco
版次1
doihttps://doi.org/10.1007/978-3-030-13453-2
isbn_softcover978-3-030-13452-5
isbn_ebook978-3-030-13453-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称ECML PKDD 2018 Workshops影响因子(影响力)




书目名称ECML PKDD 2018 Workshops影响因子(影响力)学科排名




书目名称ECML PKDD 2018 Workshops网络公开度




书目名称ECML PKDD 2018 Workshops网络公开度学科排名




书目名称ECML PKDD 2018 Workshops被引频次




书目名称ECML PKDD 2018 Workshops被引频次学科排名




书目名称ECML PKDD 2018 Workshops年度引用




书目名称ECML PKDD 2018 Workshops年度引用学科排名




书目名称ECML PKDD 2018 Workshops读者反馈




书目名称ECML PKDD 2018 Workshops读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:10:56 | 显示全部楼层
Smart Cities with Deep Edgesreported data to remove identifiable information to keep the user anonymous before sending it to the cloud. This multi-stage analytics allows for initial urban reasoning on a city wide scale for deriving context information with additional analytics in the cloud focusing on certain domain challenges
发表于 2025-3-22 01:57:29 | 显示全部楼层
发表于 2025-3-22 05:09:34 | 显示全部楼层
Extending Support Vector Regression to Constraint Optimization: Application to the Reduction of Poteaper, we propose an approach using support vector machine for regression to select not only the geographic areas but also the number of to-be-added nurses in these areas for the biggest reduction of potentially avoidable hospitalizations. In this approach, besides considering all the potential facto
发表于 2025-3-22 12:10:04 | 显示全部楼层
SALER: A Data Science Solution to Detect and Prevent Corruption in Public Administrationget and cash management, public service accounts, salaries, disbursement, grants, subsidies, etc. The project has already resulted in an initial prototype (.) successfully tested by the governing bodies of Valencia, in Spain.
发表于 2025-3-22 13:38:26 | 显示全部楼层
发表于 2025-3-22 17:22:18 | 显示全部楼层
Agustín Vicente,Fernando Martínez-Manriquer detection technique on MNIST and CIFAR-10, achieving a high success rate for various adversarial attacks including FGSM, DeepFool, CW, PGD. We also show that training the detector model with attribution of adversarial examples generated even from a simple attack like FGSM further increases the det
发表于 2025-3-22 23:30:08 | 显示全部楼层
发表于 2025-3-23 02:36:23 | 显示全部楼层
3. Systems with Slowly Varying Coefficients,he state of Maharashtra (India) to predict and visualize urban LULC changes over the past 14 years. We observe that the HMM integrated model has improved prediction accuracy as compared to the corresponding MC integrated model.
发表于 2025-3-23 09:20:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 04:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表