找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diagrammatic Representation and Inference; 14th International C Jens Lemanski,Mikkel Willum Johansen,Richard Burns Conference proceedings 2

[复制链接]
楼主: ETHOS
发表于 2025-3-23 10:48:54 | 显示全部楼层
The Topology of Assertion: A Diagrammatic Rationale for Our Enduring Love of Truthontent. But why is this so natural and universal? Why do we think it would be so absurd to have a communicative practice in which free-standing utterances are instead understood to be ., and so normed to falsity or warranted .? In this paper, I draw upon Peirce’s discussion of the diagrammatic natur
发表于 2025-3-23 15:24:38 | 显示全部楼层
发表于 2025-3-23 18:41:09 | 显示全部楼层
Category Theory for Aristotelian Diagrams: The Debate on Singular Propositionsagrams in a systematic way, revealing many links with contemporary mathematics (esp. algebra). Most recently, this has led to the introduction of several notions of morphism between Aristotelian diagrams, which we are studying in the context of category theory. This is not merely a mathematical ente
发表于 2025-3-23 22:29:58 | 显示全部楼层
Rectangular Euler Diagrams and Order Theoryther a given poset can be represented with or without shading. The focus is on linear, tabular and rectangular Euler diagrams with shading and without split attributes and constructions with subdiagrams and embeddings. Euler diagrams are distinguished from geometric containment orders. Basic layout
发表于 2025-3-24 02:51:09 | 显示全部楼层
发表于 2025-3-24 10:26:59 | 显示全部楼层
EulerMerge: Simplifying Euler Diagrams Through Set Mergest intersections are shown by curve overlaps. However, Euler diagrams are not visually scalable and automatic layout techniques struggle to display real-world data sets in a comprehensible way. Prior state-of-the-art approaches can embed Euler diagrams by splitting a closed curve into multiple curves
发表于 2025-3-24 12:46:20 | 显示全部楼层
发表于 2025-3-24 15:37:24 | 显示全部楼层
https://doi.org/10.1007/978-3-031-71291-3argument maps; Aristotelian diagrams; Byzantine diagrams; category theory; cluster algebras; data visuali
发表于 2025-3-24 20:08:44 | 显示全部楼层
发表于 2025-3-25 02:15:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 13:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表