找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Design and Architectures for Signal and Image Processing; 17th International W Tiago Dias,Paola Busia Conference proceedings 2024 The Edito

[复制链接]
楼主: Philanthropist
发表于 2025-3-26 22:19:05 | 显示全部楼层
发表于 2025-3-27 02:58:22 | 显示全部楼层
发表于 2025-3-27 07:12:47 | 显示全部楼层
Improving the Energy Efficiency of CNN Inference on FPGA Using Partial Reconfigurationnced solutions for the deployment of highly energy-efficient implementations. This paper presents a novel approach to improve the efficiency of CNN inference on Field-Programmable Gate Arrays (FPGAs) using Partial Reconfiguration (PR). Our method deconstructs CNN topology into different layers for r
发表于 2025-3-27 12:32:59 | 显示全部楼层
Optimising Graph Representation for Hardware Implementation of Graph Convolutional Networks for Evenst proposals in this area are Graph Convolutional Networks (GCNs), which allow to process events in its original sparse form while maintaining high detection and classification performance. In this paper, we present the hardware implementation of a graph generation process from an event camera data
发表于 2025-3-27 15:09:42 | 显示全部楼层
发表于 2025-3-27 18:46:47 | 显示全部楼层
Scratchy: A Class of Adaptable Architectures with Software-Managed Communication for Edge Streaming s different topology options and is demonstrated using a 3-core Scratchy. The capabilities of the architecture are presented through a design space exploration that focuses on optimizing the topology for specific applications. It also highlights the low resource overhead of the architecture and quic
发表于 2025-3-28 00:20:44 | 显示全部楼层
发表于 2025-3-28 06:08:17 | 显示全部楼层
Improving the Energy Efficiency of CNN Inference on FPGA Using Partial Reconfigurationic hardware implementations, respectively. These results also show that the benefits of PR improve with the depth of the network, suggesting very promising levels of gains as the network gets larger and under the key conditions of using fast optimized reconfiguration controllers and methodical syste
发表于 2025-3-28 09:03:33 | 显示全部楼层
发表于 2025-3-28 10:54:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-21 19:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表