找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dependent Data in Social Sciences Research; Forms, Issues, and M Mark Stemmler,Wolfgang Wiedermann,Francis L. Huang Book 2024Latest edition

[复制链接]
查看: 45618|回复: 55
发表于 2025-3-21 18:18:13 | 显示全部楼层 |阅读模式
书目名称Dependent Data in Social Sciences Research
副标题Forms, Issues, and M
编辑Mark Stemmler,Wolfgang Wiedermann,Francis L. Huang
视频video
概述Presents new developments and applications for dependent data.Includs methods for the analysis of longitudinal data and corrections for degrees of freedom.Covers growth curve modeling, directional dep
图书封面Titlebook: Dependent Data in Social Sciences Research; Forms, Issues, and M Mark Stemmler,Wolfgang Wiedermann,Francis L. Huang Book 2024Latest edition
描述.This book covers the following subjects: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). It presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom. .Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data
出版日期Book 2024Latest edition
关键词analysis of longitudinal panel count data; close proximity data; clustered or paired data; corrections
版次2
doihttps://doi.org/10.1007/978-3-031-56318-8
isbn_softcover978-3-031-56320-1
isbn_ebook978-3-031-56318-8
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Dependent Data in Social Sciences Research影响因子(影响力)




书目名称Dependent Data in Social Sciences Research影响因子(影响力)学科排名




书目名称Dependent Data in Social Sciences Research网络公开度




书目名称Dependent Data in Social Sciences Research网络公开度学科排名




书目名称Dependent Data in Social Sciences Research被引频次




书目名称Dependent Data in Social Sciences Research被引频次学科排名




书目名称Dependent Data in Social Sciences Research年度引用




书目名称Dependent Data in Social Sciences Research年度引用学科排名




书目名称Dependent Data in Social Sciences Research读者反馈




书目名称Dependent Data in Social Sciences Research读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:15:38 | 显示全部楼层
发表于 2025-3-22 02:48:25 | 显示全部楼层
发表于 2025-3-22 05:44:33 | 显示全部楼层
发表于 2025-3-22 09:35:23 | 显示全部楼层
发表于 2025-3-22 15:57:25 | 显示全部楼层
Exploration of Dependence Structures in Longitudinal Categorical Data with Ordinal Responsesrelationship with categorical covariates, the proposed approach consists of a set of SCCRAM-based strategies that take into account time dependence, data format, potential of asymmetric dependence, and model-free inference. The utility of the proposed method is demonstrated using two longitudinal ca
发表于 2025-3-22 17:56:48 | 显示全部楼层
Bayesian Network for Discovering the Potential Causal Structure in Observational Dataht on the factors that drive observed patterns and phenomena, facilitating a clear understanding of the intricate web of relationships, enabling researchers and practitioners to derive meaningful insights, and making informed decisions based on a nuanced understanding of the causal mechanisms at pla
发表于 2025-3-23 00:39:35 | 显示全部楼层
发表于 2025-3-23 01:57:14 | 显示全部楼层
发表于 2025-3-23 08:55:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-27 12:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表