找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Theory and Applications; 5th International Co Ana Fred,Allel Hadjali,Carlo Sansone Conference proceedings 2024 The Editor(s)

[复制链接]
查看: 47226|回复: 52
发表于 2025-3-21 19:19:40 | 显示全部楼层 |阅读模式
书目名称Deep Learning Theory and Applications
副标题5th International Co
编辑Ana Fred,Allel Hadjali,Carlo Sansone
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Deep Learning Theory and Applications; 5th International Co Ana Fred,Allel Hadjali,Carlo Sansone Conference proceedings 2024 The Editor(s)
描述.The two-volume set CCIS 2171 and 2172 constitutes the refereed best papers from the 5th International Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024. ..The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc. .
出版日期Conference proceedings 2024
关键词Models and Algorithms; machine learning; Big Data Analytics; Computer Vision Applications; Natural Langu
版次1
doihttps://doi.org/10.1007/978-3-031-66694-0
isbn_softcover978-3-031-66693-3
isbn_ebook978-3-031-66694-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Deep Learning Theory and Applications影响因子(影响力)




书目名称Deep Learning Theory and Applications影响因子(影响力)学科排名




书目名称Deep Learning Theory and Applications网络公开度




书目名称Deep Learning Theory and Applications网络公开度学科排名




书目名称Deep Learning Theory and Applications被引频次




书目名称Deep Learning Theory and Applications被引频次学科排名




书目名称Deep Learning Theory and Applications年度引用




书目名称Deep Learning Theory and Applications年度引用学科排名




书目名称Deep Learning Theory and Applications读者反馈




书目名称Deep Learning Theory and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:11:11 | 显示全部楼层
发表于 2025-3-22 01:42:40 | 显示全部楼层
发表于 2025-3-22 06:42:55 | 显示全部楼层
,Die Identitätsarbeit der Führungskraft,on time (13.) was only occasionally included. The 62 papers used 57 different datasets to evaluate their respective strategies. Most datasets contained newspaper articles or biomedical/medical data. Our analysis revealed that 26 out of 57 datasets are publicly accessible.. Numerous active learning s
发表于 2025-3-22 09:17:59 | 显示全部楼层
,IT — eine Industrie hat sich normalisiert,ated deaths, reaching nearly 1500 during the four heatwave episodes and exceeding 5000 over the entire summer period, as documented by the Ministry of Ecology, emphasizes the crucial nature of our research. Over an eight-year period, from 2015 to 2023, our methodology encompasses data preparation, i
发表于 2025-3-22 14:52:06 | 显示全部楼层
Teamperspektive: altersheterogene Teams,performed all other classifiers with an accuracy of 95.68% and a prediction time of 13 s. The second highest performer was the Naive Bayes classifier which attained an accuracy of 95.38% and a prediction time of 0.2 s.
发表于 2025-3-22 20:37:58 | 显示全部楼层
pared to T-T-T-T architecture when trained from scratch on limited data. This project proposes an architecture modifying the SegFormer Transformer with two convolutional modules, achieving pixel accuracies of 0.6956 on MS COCO.
发表于 2025-3-23 00:39:52 | 显示全部楼层
发表于 2025-3-23 04:11:26 | 显示全部楼层
Innenkolonisation und Naturalwirtschaft,e food products with varying viscosity through different flour and water mixtures, we aim to investigate the feasibility of developing an automatic, deep-learning-based system for real-time viscosity estimation in manufacturing processes. Our results indicate that our proposed methodology can automa
发表于 2025-3-23 05:50:59 | 显示全部楼层
ning process. However, the aim of the article is not to improve individual aspects of neural network algorithm operation but to demonstrate the effectiveness of applying vector-matrix analysis to study various properties of neural network data processing.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 08:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表