找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database and Expert Systems Applications; 35th International C Christine Strauss,Toshiyuki Amagasa,Ismail Khalil Conference proceedings 202

[复制链接]
楼主: FLAW
发表于 2025-3-28 16:12:21 | 显示全部楼层
Die Matrix-Steifigkeitsmethode,s (e.g., .). While it scales well for large datasets, characterizing the impact of the small-world construction strategy on the search quality is still an open issue. This paper investigates how result diversification can shed light on that question by adding a parameterless strategy to HNSW that ex
发表于 2025-3-28 22:21:53 | 显示全部楼层
发表于 2025-3-28 23:34:50 | 显示全部楼层
Das Konzept der Finite-Element-Methode,based text-to-SQL tools, that is, tools that translate Natural Language (NL) sentences into SQL queries using a Large Language Model (LLM). Indeed, their accuracy on RW-RDBs is considerably less than that reported for well-known synthetic benchmarks. This paper then introduces a technique to improve
发表于 2025-3-29 04:16:34 | 显示全部楼层
https://doi.org/10.1007/978-3-322-92856-6 optimization. However, the task of feature selection and encoding for machine learning in database tasks presents significant challenges. Recently, some representation methods have been proposed that utilize physical plan or SQL query as feature. However, these methods have two limitations. Firstly
发表于 2025-3-29 09:18:52 | 显示全部楼层
Das Konzept der Finite-Element-Methode,te query results and optimize query execution plans and other tasks. In order to have quick access to the data, the common practice is to create an index, which is often implemented by using B+Trees. Existing state-of-the-art algorithms for random sampling over B+Trees result in a significant perfor
发表于 2025-3-29 14:34:01 | 显示全部楼层
Ausblick auf Optimierungsstrategien,, it’s crucial to filter out unnecessary tables and columns, focusing the language model on relevant ones. Previous methods have attempted to sort tables and columns based on relevance or directly identify necessary elements, but these approaches suffer from long training times, high costs with GPT-
发表于 2025-3-29 16:13:04 | 显示全部楼层
发表于 2025-3-29 21:10:40 | 显示全部楼层
发表于 2025-3-30 02:58:43 | 显示全部楼层
发表于 2025-3-30 04:43:04 | 显示全部楼层
https://doi.org/10.1007/978-3-642-60909-1ized the flexibility of serverless computing. The widely used Bulk Synchronous Parallel (BSP) mode has significant resource waste, the parameter server nodes suffer bottleneck pressure from both networking and performance aspects. This paper presents Chorus, a machine learning framework on serverles
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-28 00:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表