找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data and Applications Security and Privacy XXXVIII; 38th Annual IFIP WG Anna Lisa Ferrara,Ram Krishnan Conference proceedings 2024 IFIP In

[复制链接]
查看: 32664|回复: 54
发表于 2025-3-21 19:52:34 | 显示全部楼层 |阅读模式
书目名称Data and Applications Security and Privacy XXXVIII
副标题38th Annual IFIP WG
编辑Anna Lisa Ferrara,Ram Krishnan
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Data and Applications Security and Privacy XXXVIII; 38th Annual IFIP WG  Anna Lisa Ferrara,Ram Krishnan Conference proceedings 2024 IFIP In
描述.This book constitutes the proceedings from the 38th Annual IFIP 11.3 Conference on Data and Applications Security and Privacy XXXVIII, DBSec 2024, held in San Jose, CA, USA, during July 15–17, 2024...The 14 full papers and 6 short papers presented were carefully reviewed and selected from 39 submissions. The papers are organized in the following topical sections: access control; crypto application; privacy; attack; ml attack, vulnerability; security user studies; and differential privacy..
出版日期Conference proceedings 2024
关键词access control; privacy; anonymity; data protection; data security; vulnerability; risk management; secure
版次1
doihttps://doi.org/10.1007/978-3-031-65172-4
isbn_softcover978-3-031-65171-7
isbn_ebook978-3-031-65172-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightIFIP International Federation for Information Processing 2024
The information of publication is updating

书目名称Data and Applications Security and Privacy XXXVIII影响因子(影响力)




书目名称Data and Applications Security and Privacy XXXVIII影响因子(影响力)学科排名




书目名称Data and Applications Security and Privacy XXXVIII网络公开度




书目名称Data and Applications Security and Privacy XXXVIII网络公开度学科排名




书目名称Data and Applications Security and Privacy XXXVIII被引频次




书目名称Data and Applications Security and Privacy XXXVIII被引频次学科排名




书目名称Data and Applications Security and Privacy XXXVIII年度引用




书目名称Data and Applications Security and Privacy XXXVIII年度引用学科排名




书目名称Data and Applications Security and Privacy XXXVIII读者反馈




书目名称Data and Applications Security and Privacy XXXVIII读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:34:30 | 显示全部楼层
Citizen, Go West, Blue Helmet, Star Trek, Our findings show that we can identify the type of device with about . accuracy and determine the values sent by . devices, like temperature readings, with approximately . accuracy. To counter these vulnerabilities, we design a system that enhances data security for . solutions in the untrusted clo
发表于 2025-3-22 03:28:26 | 显示全部楼层
https://doi.org/10.1007/978-3-642-56102-3aph, and (2) achieving query indistinguishability by concealing access patterns. Additionally, we conducted experimentation to evaluate the efficiency of the proposed schemes when dealing with real-world location navigation services.
发表于 2025-3-22 08:20:38 | 显示全部楼层
Selbstregulierung der Wirtschaftarn from the anonymized data. The basic idea of our approach is to perform the anonymization process on partitions produced by a decision tree driven by the target of the classification task. Each partition is then independently anonymized, to limit the impact of anonymization on the attributes and
发表于 2025-3-22 11:06:18 | 显示全部楼层
https://doi.org/10.1007/978-3-642-45645-9rivacy and prevents misuse. The security properties of Visor are formally demonstrated; the system guarantees integrity and ensures that users remain anonymous during feedback, while also maintaining unlinkability among pseudonyms and reviews associated with the same user. Finally, the system provid
发表于 2025-3-22 15:17:39 | 显示全部楼层
发表于 2025-3-22 20:35:16 | 显示全部楼层
https://doi.org/10.1007/978-3-322-92085-0ure, with the scenarios observing the EVSE in both idle and charging states. The results of statistical analysis and machine learning classification tasks demonstrate the suitability of this dataset for baseline behavioral profiling, classification and anomaly detection tasks.
发表于 2025-3-22 21:27:00 | 显示全部楼层
Searching for a Common Languageel cybersecurity framework which leverages active learning strategies in conjunction with an LLM. This approach dynamically selects the most informative instances for annotation, thereby achieving comparable performance with a significantly smaller dataset. By prioritizing the annotation of samples
发表于 2025-3-23 04:30:32 | 显示全部楼层
,„Mein Smartphone ist mein Schatz“, a particular task by adjusting the input data for the downstream task to fit the pretrained model. Comparative analyses between VulPrompt and other baseline methods demonstrate the model’s robust performance across all datasets tested, consistently achieving notable results. This success showcases
发表于 2025-3-23 06:41:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-14 18:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表