找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dynamics through First-Order Differential Equations in the Configuration Space; Jaume Llibre,Rafael Ramírez,Valentín Ramírez Book 2023 The

[复制链接]
楼主: 警察在苦笑
发表于 2025-3-23 10:46:10 | 显示全部楼层
,Cartesian-Synge–Cinsov Vector Field,We shall study the autonomous mechanical system with configuration space
发表于 2025-3-23 14:08:57 | 显示全部楼层
Vincent E. Rubatzky,Mas Yamaguchienerated by a smooth Hamiltonian over a symplectic manifold. The flows are symplectomorphisms, i.e., a transformation of phase space that is volume preserving and preserves the symplectic structure of the phase space, and hence obeys Liouville’s Theorem. In 1973 Yoichiro Nambu suggested an extension
发表于 2025-3-23 21:18:31 | 显示全部楼层
发表于 2025-3-24 00:53:03 | 显示全部楼层
978-3-031-27097-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-24 03:18:18 | 显示全部楼层
发表于 2025-3-24 07:32:16 | 显示全部楼层
,Generalized Cartesian–Nambu Vector Fields,ven Poisson bracket and replacing a single Hamiltonian . for . − 1 Hamiltonian ., …, .. In the canonical Hamiltonian formulation the equations of motion (Hamilton equations) are defined via the Poisson bracket.
发表于 2025-3-24 12:54:32 | 显示全部楼层
dy of ODEs.Offers a solution to the inverse problem in celesThe goal of this monograph is to answer the question, is it possible to solve the dynamics problem inside the configuration space instead of the phase space? By introducing a proper class of vector field – the Cartesian vector field – given
发表于 2025-3-24 15:42:55 | 显示全部楼层
发表于 2025-3-24 22:02:13 | 显示全部楼层
Book 2023 space? By introducing a proper class of vector field – the Cartesian vector field – given in a Riemann space, the authors explore the connections between the first order ordinary differential equations (ODEs) associated to the Cartesian vector field in the configuration space of a given mechanical
发表于 2025-3-25 02:48:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 19:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表