找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dynamics Reported; Expositions in Dynam Christopher K. R. T. Jones,Urs Kirchgraber,Hans-Ot Book 1996 Springer-Verlar Berlin Heidelberg 1996

[复制链接]
楼主: frustrate
发表于 2025-3-23 13:05:13 | 显示全部楼层
Adversary of the Queen’s Adversariesear the homoclinic orbit is determined asymptotically by a reduced system on the center manifold. The method is applied to cases where the center manifold is one- or two-dimensional. When the center manifold is one-dimensional, we can obtain all the solutions near the homoclinic orbit. When a Hopf b
发表于 2025-3-23 15:08:59 | 显示全部楼层
https://doi.org/10.1057/9780230389083Schrödinger equation, a perturbation which contains damping and driving terms. Specifically, we study, both analytically and numerically, homoclinic and chaotic behavior in a two mode ode truncation. First, we summarize recent results of numerical experiments which establish the presence of irregula
发表于 2025-3-23 20:05:06 | 显示全部楼层
发表于 2025-3-24 01:23:48 | 显示全部楼层
Dynamics Reported978-3-642-79931-0Series ISSN 0936-6040 Series E-ISSN 2942-8548
发表于 2025-3-24 04:55:27 | 显示全部楼层
发表于 2025-3-24 07:19:14 | 显示全部楼层
Feedback Stabilizability of Time-Periodic Parabolic Equations,e fact that they have served as models for the evolution of systems arising in physics, chemistry, biology and various other disciplines. However, the traditional topics in the theory of differential equations do not encompass many important problems which fall into the realm of what is today known
发表于 2025-3-24 14:40:14 | 显示全部楼层
发表于 2025-3-24 16:28:23 | 显示全部楼层
Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular PerSchrödinger equation, a perturbation which contains damping and driving terms. Specifically, we study, both analytically and numerically, homoclinic and chaotic behavior in a two mode ode truncation. First, we summarize recent results of numerical experiments which establish the presence of irregula
发表于 2025-3-24 19:29:40 | 显示全部楼层
发表于 2025-3-25 00:55:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-27 23:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表