找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dynamic Regression Models for Survival Data; Torben Martinussen,Thomas H. Scheike Book 2006 Springer-Verlag New York 2006 Counting.Resampl

[复制链接]
查看: 23263|回复: 35
发表于 2025-3-21 19:46:33 | 显示全部楼层 |阅读模式
书目名称Dynamic Regression Models for Survival Data
编辑Torben Martinussen,Thomas H. Scheike
视频video
概述A key issue in this book is extensions of the Cox model and alternative models with most of them having the specific aim to be able to deal with time-varying effects of covariates in regression analys
丛书名称Statistics for Biology and Health
图书封面Titlebook: Dynamic Regression Models for Survival Data;  Torben Martinussen,Thomas H. Scheike Book 2006 Springer-Verlag New York 2006 Counting.Resampl
描述.In survival analysis there has long been a need for models that goes beyond the Cox model as the proportional hazards assumption often fails in practice. This book studies and applies modern flexible regression models for survival data with a special focus on extensions of the Cox model and alternative models with the specific aim of describing time-varying effects of explanatory variables. One model that receives special attention is Aalen’s additive hazards model that is particularly well suited for dealing with time-varying effects. The book covers the use of residuals and resampling techniques to assess the fit of the models and also points out how the suggested models can be utilised for clustered survival data. The authors demonstrate the practically important aspect of how to do hypothesis testing of time-varying effects making backwards model selection strategies possible for the flexible models considered...The use of the suggested models and methods is illustrated on real data examples. The methods are available in the R-package timereg developed by the authors, which is applied throughout the book with worked examples for the data sets. This gives the reader a unique ch
出版日期Book 2006
关键词Counting; Resampling; Statistica; cluster; counting process; permutation tests; point process; selection; se
版次1
doihttps://doi.org/10.1007/0-387-33960-4
isbn_softcover978-1-4419-1904-5
isbn_ebook978-0-387-33960-3Series ISSN 1431-8776 Series E-ISSN 2197-5671
issn_series 1431-8776
copyrightSpringer-Verlag New York 2006
The information of publication is updating

书目名称Dynamic Regression Models for Survival Data影响因子(影响力)




书目名称Dynamic Regression Models for Survival Data影响因子(影响力)学科排名




书目名称Dynamic Regression Models for Survival Data网络公开度




书目名称Dynamic Regression Models for Survival Data网络公开度学科排名




书目名称Dynamic Regression Models for Survival Data被引频次




书目名称Dynamic Regression Models for Survival Data被引频次学科排名




书目名称Dynamic Regression Models for Survival Data年度引用




书目名称Dynamic Regression Models for Survival Data年度引用学科排名




书目名称Dynamic Regression Models for Survival Data读者反馈




书目名称Dynamic Regression Models for Survival Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:49:38 | 显示全部楼层
1431-8776 with time-varying effects of covariates in regression analys.In survival analysis there has long been a need for models that goes beyond the Cox model as the proportional hazards assumption often fails in practice. This book studies and applies modern flexible regression models for survival data wit
发表于 2025-3-22 03:01:42 | 显示全部楼层
https://doi.org/10.1007/0-387-33960-4Counting; Resampling; Statistica; cluster; counting process; permutation tests; point process; selection; se
发表于 2025-3-22 04:43:29 | 显示全部楼层
发表于 2025-3-22 09:20:47 | 显示全部楼层
发表于 2025-3-22 13:24:38 | 显示全部楼层
Statistics for Biology and Healthhttp://image.papertrans.cn/e/image/283737.jpg
发表于 2025-3-22 20:55:18 | 显示全部楼层
发表于 2025-3-23 00:27:33 | 显示全部楼层
Accelerated failure time and transformation models,
发表于 2025-3-23 03:25:00 | 显示全部楼层
发表于 2025-3-23 08:01:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 20:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表