找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dynamic Mixed Models for Familial Longitudinal Data; Brajendra C. Sutradhar Book 20111st edition Springer Science+Business Media, LLC 2011

[复制链接]
查看: 31930|回复: 42
发表于 2025-3-21 16:52:08 | 显示全部楼层 |阅读模式
书目名称Dynamic Mixed Models for Familial Longitudinal Data
编辑Brajendra C. Sutradhar
视频video
概述Provides a clear direction for accurate familial and longitudinal data analysis by presenting differences between the familial and longitudinal correlation models.Deals with non-stationary longitudina
丛书名称Springer Series in Statistics
图书封面Titlebook: Dynamic Mixed Models for Familial Longitudinal Data;  Brajendra C. Sutradhar Book 20111st edition Springer Science+Business Media, LLC 2011
描述.This book provides a theoretical foundation for the analysis of discrete data such as count and binary data in the longitudinal setup. Unlike the existing books, this book uses a class of auto-correlation structures to model the longitudinal correlations for the repeated discrete data that accommodates all possible Gaussian type auto-correlation models as special cases including the equi-correlation models. This new dynamic modelling approach is utilized to develop theoretically sound inference techniques such as the generalized quasi-likelihood (GQL) technique for consistent and efficient estimation of the underlying regression effects involved in the model, whereas the existing ‘working’ correlations based GEE (generalized.estimating equations) approach has serious theoretical limitations both for consistent and efficient estimation, and the existing random effects based correlations approach is not suitable to model the longitudinal correlations. The book has exploited the random effects carefully only to model the correlations of the familial data. Subsequently, this book has modelled the correlations of the longitudinal data collected from the members of a large number of ind
出版日期Book 20111st edition
关键词GEE approaches and drawbacks; Generalized linear longitudinal mixed models (GLLMM); Generalized linear
版次1
doihttps://doi.org/10.1007/978-1-4419-8342-8
isbn_softcover978-1-4614-2801-5
isbn_ebook978-1-4419-8342-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media, LLC 2011
The information of publication is updating

书目名称Dynamic Mixed Models for Familial Longitudinal Data影响因子(影响力)




书目名称Dynamic Mixed Models for Familial Longitudinal Data影响因子(影响力)学科排名




书目名称Dynamic Mixed Models for Familial Longitudinal Data网络公开度




书目名称Dynamic Mixed Models for Familial Longitudinal Data网络公开度学科排名




书目名称Dynamic Mixed Models for Familial Longitudinal Data被引频次




书目名称Dynamic Mixed Models for Familial Longitudinal Data被引频次学科排名




书目名称Dynamic Mixed Models for Familial Longitudinal Data年度引用




书目名称Dynamic Mixed Models for Familial Longitudinal Data年度引用学科排名




书目名称Dynamic Mixed Models for Familial Longitudinal Data读者反馈




书目名称Dynamic Mixed Models for Familial Longitudinal Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:00:32 | 显示全部楼层
发表于 2025-3-22 04:20:23 | 显示全部楼层
发表于 2025-3-22 04:45:02 | 显示全部楼层
Book 20111st editionapproach is not suitable to model the longitudinal correlations. The book has exploited the random effects carefully only to model the correlations of the familial data. Subsequently, this book has modelled the correlations of the longitudinal data collected from the members of a large number of ind
发表于 2025-3-22 11:32:37 | 显示全部楼层
发表于 2025-3-22 14:22:24 | 显示全部楼层
发表于 2025-3-22 17:59:27 | 显示全部楼层
发表于 2025-3-22 23:02:32 | 显示全部楼层
发表于 2025-3-23 01:51:07 | 显示全部楼层
发表于 2025-3-23 08:39:24 | 显示全部楼层
Dynamic Mixed Models for Familial Longitudinal Data978-1-4419-8342-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 16:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表