找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Decomposition Methods in Science and Engineering XXVII; Zdeněk Dostál,Tomáš Kozubek,Olof B. Widlund Conference proceedings 2024 The

[复制链接]
楼主: 戏弄
发表于 2025-3-25 05:19:54 | 显示全部楼层
https://doi.org/10.1007/978-3-319-20173-3Given a bounded polygonal domain Ω C R..s
发表于 2025-3-25 08:05:45 | 显示全部楼层
发表于 2025-3-25 12:25:57 | 显示全部楼层
Ultrafast Nanoplasmonic PhotoemissionThe Neumann-Neumann method (NNM), first introduced in [1] in the case of two subdomains, is among the most popular non-overlapping domain decomposition methods.
发表于 2025-3-25 17:57:35 | 显示全部楼层
发表于 2025-3-25 20:19:00 | 显示全部楼层
John Magee,Torsten Felzer,I. Scott MacKenzieSubstructured Schwarz methods are interpretations of volume Schwarz methods as algorithms on interface variables.
发表于 2025-3-26 00:14:41 | 显示全部楼层
发表于 2025-3-26 06:51:30 | 显示全部楼层
发表于 2025-3-26 09:23:26 | 显示全部楼层
Optimized Robin Transmission Conditions for Anisotropic Diffusion on Arbitrary MeshesWe are interested in solving in parallel anisotropic diffusion problems of the form.
发表于 2025-3-26 13:36:35 | 显示全部楼层
Convergence Bounds for One-Dimensional ASH and RASThe ASH and RAS methods were introduced in [2] and rate of convergence theory is still missing; apparently it does not fall into the abstract theory of Schwarz methods since the nonsymmetric terms are no compact perturbations of .1-norms.
发表于 2025-3-26 17:48:57 | 显示全部楼层
How Does the Partition of Unity Influence SORAS Preconditioner?The Symmetrized Optimized Restricted Additive Schwarz (SORAS) preconditioner, first introduced in [8] for the Helmholtz equation and called OBDD-H, was later studied in [6] for generic symmetric positive definite problems and viewed as a symmetric variant of ORAS preconditioner.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-27 04:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表