找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Decomposition Methods in Science and Engineering XXVII; Zdeněk Dostál,Tomáš Kozubek,Olof B. Widlund Conference proceedings 2024 The

[复制链接]
楼主: 戏弄
发表于 2025-3-25 05:19:54 | 显示全部楼层
https://doi.org/10.1007/978-3-319-20173-3Given a bounded polygonal domain Ω C R..s
发表于 2025-3-25 08:05:45 | 显示全部楼层
发表于 2025-3-25 12:25:57 | 显示全部楼层
Ultrafast Nanoplasmonic PhotoemissionThe Neumann-Neumann method (NNM), first introduced in [1] in the case of two subdomains, is among the most popular non-overlapping domain decomposition methods.
发表于 2025-3-25 17:57:35 | 显示全部楼层
发表于 2025-3-25 20:19:00 | 显示全部楼层
John Magee,Torsten Felzer,I. Scott MacKenzieSubstructured Schwarz methods are interpretations of volume Schwarz methods as algorithms on interface variables.
发表于 2025-3-26 00:14:41 | 显示全部楼层
发表于 2025-3-26 06:51:30 | 显示全部楼层
发表于 2025-3-26 09:23:26 | 显示全部楼层
Optimized Robin Transmission Conditions for Anisotropic Diffusion on Arbitrary MeshesWe are interested in solving in parallel anisotropic diffusion problems of the form.
发表于 2025-3-26 13:36:35 | 显示全部楼层
Convergence Bounds for One-Dimensional ASH and RASThe ASH and RAS methods were introduced in [2] and rate of convergence theory is still missing; apparently it does not fall into the abstract theory of Schwarz methods since the nonsymmetric terms are no compact perturbations of .1-norms.
发表于 2025-3-26 17:48:57 | 显示全部楼层
How Does the Partition of Unity Influence SORAS Preconditioner?The Symmetrized Optimized Restricted Additive Schwarz (SORAS) preconditioner, first introduced in [8] for the Helmholtz equation and called OBDD-H, was later studied in [6] for generic symmetric positive definite problems and viewed as a symmetric variant of ORAS preconditioner.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-14 01:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表