找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf; First MICCAI Worksho Qian Wang,Fausto

[复制链接]
楼主: 误解
发表于 2025-3-26 23:48:43 | 显示全部楼层
发表于 2025-3-27 04:11:29 | 显示全部楼层
发表于 2025-3-27 05:49:57 | 显示全部楼层
Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Timages are often collected from multiple sites and/or protocols for increasing statistical power, while CNN trained on one site typically cannot be well-transferred to others. Further, expert-defined manual labels for medical images are typically rare, making training a dedicated CNN for each site u
发表于 2025-3-27 10:16:52 | 显示全部楼层
发表于 2025-3-27 14:34:59 | 显示全部楼层
发表于 2025-3-27 20:44:42 | 显示全部楼层
发表于 2025-3-27 23:05:54 | 显示全部楼层
发表于 2025-3-28 02:55:17 | 显示全部楼层
发表于 2025-3-28 06:28:41 | 显示全部楼层
CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CTting enough large-scale data will require automated tools to harvest data/label pairs from messy and real-world datasets, such as hospital picture archiving and communication systems (PACSs). This is the focus of our work, where we present a principled data curation tool to extract multi-phase compu
发表于 2025-3-28 13:22:00 | 显示全部楼层
Active Learning Technique for Multimodal Brain Tumor Segmentation Using Limited Labeled Imagesntation. However, deep learning requires the availability of large annotated data to train these models, which can be challenging in biomedical imaging domain. In this paper, we aim to accomplish biomedical image segmentation with limited labeled data using active learning. We present a deep active
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 18:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表