找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation and Representation Transfer; 4th MICCAI Workshop, Konstantinos Kamnitsas,Lisa Koch,Sotirios Tsaftari Conference proceedin

[复制链接]
查看: 14096|回复: 56
发表于 2025-3-21 16:10:46 | 显示全部楼层 |阅读模式
书目名称Domain Adaptation and Representation Transfer
副标题4th MICCAI Workshop,
编辑Konstantinos Kamnitsas,Lisa Koch,Sotirios Tsaftari
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Domain Adaptation and Representation Transfer; 4th MICCAI Workshop, Konstantinos Kamnitsas,Lisa Koch,Sotirios Tsaftari Conference proceedin
描述This book constitutes the refereed proceedings of the 4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with MICCAI 2022, in September 2022. .DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.. .
出版日期Conference proceedings 2022
关键词artificial intelligence; bioinformatics; clustering algorithms; color image processing; color images; com
版次1
doihttps://doi.org/10.1007/978-3-031-16852-9
isbn_softcover978-3-031-16851-2
isbn_ebook978-3-031-16852-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Domain Adaptation and Representation Transfer影响因子(影响力)




书目名称Domain Adaptation and Representation Transfer影响因子(影响力)学科排名




书目名称Domain Adaptation and Representation Transfer网络公开度




书目名称Domain Adaptation and Representation Transfer网络公开度学科排名




书目名称Domain Adaptation and Representation Transfer被引频次




书目名称Domain Adaptation and Representation Transfer被引频次学科排名




书目名称Domain Adaptation and Representation Transfer年度引用




书目名称Domain Adaptation and Representation Transfer年度引用学科排名




书目名称Domain Adaptation and Representation Transfer读者反馈




书目名称Domain Adaptation and Representation Transfer读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:35:06 | 显示全部楼层
发表于 2025-3-22 00:37:18 | 显示全部楼层
发表于 2025-3-22 08:13:46 | 显示全部楼层
发表于 2025-3-22 12:20:58 | 显示全部楼层
,Task-Agnostic Continual Hippocampus Segmentation for Smooth Population Shifts,adual population shifts. We propose ODEx, a holistic solution that combines out-of-distribution detection with continual learning techniques. Validation on two scenarios of hippocampus segmentation shows that our proposed method reliably maintains performance on earlier tasks without losing plasticity.
发表于 2025-3-22 15:13:03 | 显示全部楼层
Conference proceedings 2022orum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.. .
发表于 2025-3-22 17:48:15 | 显示全部楼层
0302-9743 scussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.. .978-3-031-16851-2978-3-031-16852-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-23 00:54:11 | 显示全部楼层
发表于 2025-3-23 04:49:45 | 显示全部楼层
Conference proceedings 2022tion with MICCAI 2022, in September 2022. .DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning
发表于 2025-3-23 06:01:49 | 显示全部楼层
,Unsupervised Site Adaptation by Intra-site Variability Alignment,and propose an . method that jointly aligns the intra-site data variability in the source and target sites while training the network on the labeled source site data. We applied our method to several medical MRI image segmentation tasks and show that it consistently outperforms state-of-the-art methods.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 12:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表