找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis and Recognition - ICDAR 2023; 17th International C Gernot A. Fink,Rajiv Jain,Richard Zanibbi Conference proceedings 2023

[复制链接]
查看: 16730|回复: 66
发表于 2025-3-21 18:43:21 | 显示全部楼层 |阅读模式
书目名称Document Analysis and Recognition - ICDAR 2023
副标题17th International C
编辑Gernot A. Fink,Rajiv Jain,Richard Zanibbi
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Document Analysis and Recognition - ICDAR 2023; 17th International C Gernot A. Fink,Rajiv Jain,Richard Zanibbi Conference proceedings 2023
描述.This six-volume set of LNCS 14187, 14188, 14189, 14190, 14191 and 14192 constitutes the refereed proceedings of the 17.th. International Conference on Document Analysis and Recognition, ICDAR 2021, held in San José, CA, USA, in August 2023. The 53 full papers were carefully reviewed and selected from 316 submissions, and are presented with 101 poster presentations...The papers are organized into the following topical sections: Graphics Recognition, Frontiers in Handwriting Recognition, Document Analysis and Recognition..
出版日期Conference proceedings 2023
关键词Document Analysis Systems; artificial intelligence; Document Layout and Parsing; Document Information E
版次1
doihttps://doi.org/10.1007/978-3-031-41685-9
isbn_softcover978-3-031-41684-2
isbn_ebook978-3-031-41685-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Document Analysis and Recognition - ICDAR 2023影响因子(影响力)




书目名称Document Analysis and Recognition - ICDAR 2023影响因子(影响力)学科排名




书目名称Document Analysis and Recognition - ICDAR 2023网络公开度




书目名称Document Analysis and Recognition - ICDAR 2023网络公开度学科排名




书目名称Document Analysis and Recognition - ICDAR 2023被引频次




书目名称Document Analysis and Recognition - ICDAR 2023被引频次学科排名




书目名称Document Analysis and Recognition - ICDAR 2023年度引用




书目名称Document Analysis and Recognition - ICDAR 2023年度引用学科排名




书目名称Document Analysis and Recognition - ICDAR 2023读者反馈




书目名称Document Analysis and Recognition - ICDAR 2023读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:04:15 | 显示全部楼层
Document Analysis and Recognition - ICDAR 2023978-3-031-41685-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 03:19:14 | 显示全部楼层
发表于 2025-3-22 08:37:12 | 显示全部楼层
发表于 2025-3-22 10:05:09 | 显示全部楼层
Paola Gentile,María Luisa Rodríguez Muñozion accuracy and non-character rejection capability. The classifier can be trained on both character samples and string samples but real string samples are usually insufficient. In this paper, we proposed a learning method for segmentation-based online handwritten Chinese text recognition with a con
发表于 2025-3-22 14:49:18 | 显示全部楼层
发表于 2025-3-22 18:12:57 | 显示全部楼层
发表于 2025-3-22 23:27:54 | 显示全部楼层
Pharmaceutical Industry Performancel NLP models constitutes an intuitive solution. However, due to the difficulty of recognizing handwriting and the error propagation problem, optimized architectures are required. Recognition-free approaches proved to be robust, but often produce poorer results compared to recognition-based methods.
发表于 2025-3-23 03:21:05 | 显示全部楼层
Pharmaceutical Industry Performancepower of language models in this context is the existence of many specialized domains with language statistics very different from those implied by a general language model - think of checks, medical prescriptions, and many other specialized document classes. This paper introduces an algorithm for e
发表于 2025-3-23 06:05:13 | 显示全部楼层
https://doi.org/10.1007/978-3-319-50042-3sed OCR systems are computationally expensive because they rely on computationally expensive pretraining over text images. To address this challenge, we propose a robust architecture that utilizes a custom CNN block with a Transformer encoder for image understanding and a pre-trained Transformer dec
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 01:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表