找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Distributions, Partial Differential Equations, and Harmonic Analysis; Dorina Mitrea Textbook 2018Latest edition Springer Nature Switzerlan

[复制链接]
楼主: Julienne
发表于 2025-3-26 20:57:34 | 显示全部楼层
发表于 2025-3-27 02:41:55 | 显示全部楼层
The Heat Operator and Related Versions,This chapter has a twofold aim: determine all fundamental solutions that are tempered distributions for the heat operator and related versions (including the Schrödinger operator), then use this as a tool in obtaining the solution of the generalized Cauchy problem for the heat operator.
发表于 2025-3-27 07:13:29 | 显示全部楼层
The Wave Operator,Here all fundamental solutions that are tempered distributions for the wave operator are determined and then used as a tool in the solution of the generalized Cauchy problem for this operator.
发表于 2025-3-27 11:33:46 | 显示全部楼层
发表于 2025-3-27 16:49:56 | 显示全部楼层
发表于 2025-3-27 19:14:46 | 显示全部楼层
发表于 2025-3-27 23:29:27 | 显示全部楼层
https://doi.org/10.1007/978-981-16-0819-3features, such as the concept of support, multiplication with a smooth function, distributional derivatives, tensor product, and a partially defined convolution product. Here the nature of distributions with higher order gradients continuous or bounded is also discussed.
发表于 2025-3-28 03:32:41 | 显示全部楼层
https://doi.org/10.1007/978-3-662-10451-4ns are introduced and studied, including homogeneous and principal value distributions. Significant applications to harmonic analysis and partial differential equations are singled out. For example, a general, higher dimensional jump-formula is deduced in this chapter for a certain class of tempered
发表于 2025-3-28 09:57:39 | 显示全部楼层
发表于 2025-3-28 13:19:47 | 显示全部楼层
Theory of Quantum Transport at Nanoscaleer. While the natural starting point is the Laplacian, this study encompasses a variety of related operators, such as the bi-Laplacian, the poly-harmonic operator, the Helmholtz operator and its iterations, the Cauchy–Riemann operator, the Dirac operator, the perturbed Dirac operator and its iterati
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 07:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表