找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Distributed Network Structure Estimation Using Consensus Methods; Sai Zhang,Cihan Tepedelenlioglu,Mahesh Banavar Book 2018 Springer Nature

[复制链接]
查看: 33923|回复: 37
发表于 2025-3-21 17:32:41 | 显示全部楼层 |阅读模式
书目名称Distributed Network Structure Estimation Using Consensus Methods
编辑Sai Zhang,Cihan Tepedelenlioglu,Mahesh Banavar
视频video
丛书名称Synthesis Lectures on Communications
图书封面Titlebook: Distributed Network Structure Estimation Using Consensus Methods;  Sai Zhang,Cihan Tepedelenlioglu,Mahesh Banavar Book 2018 Springer Nature
描述The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DNDD) algorithm is described. The DNDD algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm forestimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algor
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-031-01684-4
isbn_softcover978-3-031-00556-5
isbn_ebook978-3-031-01684-4Series ISSN 1932-1244 Series E-ISSN 1932-1708
issn_series 1932-1244
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Distributed Network Structure Estimation Using Consensus Methods影响因子(影响力)




书目名称Distributed Network Structure Estimation Using Consensus Methods影响因子(影响力)学科排名




书目名称Distributed Network Structure Estimation Using Consensus Methods网络公开度




书目名称Distributed Network Structure Estimation Using Consensus Methods网络公开度学科排名




书目名称Distributed Network Structure Estimation Using Consensus Methods被引频次




书目名称Distributed Network Structure Estimation Using Consensus Methods被引频次学科排名




书目名称Distributed Network Structure Estimation Using Consensus Methods年度引用




书目名称Distributed Network Structure Estimation Using Consensus Methods年度引用学科排名




书目名称Distributed Network Structure Estimation Using Consensus Methods读者反馈




书目名称Distributed Network Structure Estimation Using Consensus Methods读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:40:18 | 显示全部楼层
https://doi.org/10.1057/9780230270619ee distribution usually follows power-law degree distribution [146]. Therefore the topology of the network such as random topology and tree topology can be inferred from the degree distribution. Note that part of the content in this chapter is presented in [147].
发表于 2025-3-22 03:36:48 | 显示全部楼层
发表于 2025-3-22 05:33:07 | 显示全部楼层
1932-1244 e, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WS
发表于 2025-3-22 09:47:55 | 显示全部楼层
1932-1244 egion of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algor978-3-031-00556-5978-3-031-01684-4Series ISSN 1932-1244 Series E-ISSN 1932-1708
发表于 2025-3-22 16:25:41 | 显示全部楼层
Book 2018sensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm forestimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algor
发表于 2025-3-22 17:54:00 | 显示全部楼层
发表于 2025-3-22 22:42:31 | 显示全部楼层
Distributed Network Structure Estimation Using Consensus Methods
发表于 2025-3-23 04:29:07 | 显示全部楼层
Synthesis Lectures on Communicationshttp://image.papertrans.cn/e/image/281928.jpg
发表于 2025-3-23 07:53:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 08:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表