找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Distributed Computing and Internet Technology; 12th International C Nikolaj Bjørner,Sanjiva Prasad,Laxmi Parida Conference proceedings 2016

[复制链接]
楼主: antibody
发表于 2025-3-28 15:24:59 | 显示全部楼层
发表于 2025-3-28 20:29:28 | 显示全部楼层
K-means and Wordnet Based Feature Selection Combined with Extreme Learning Machines for Text Classifpurpose, 20-Newsgroups and DMOZ datasets have been used. The empirical results on these two benchmark datasets demonstrate the applicability, efficiency and effectiveness of our approach using ELM and ML-ELM as the classifiers over state-of-the-art classifiers.
发表于 2025-3-29 01:24:57 | 显示全部楼层
发表于 2025-3-29 06:36:23 | 显示全部楼层
Storage Load Control Through Meta-Scheduler Using Predictive Analyticsynthetic and industry specific I/O intensive jobs have shown to have superior total completion time and total flow time compared to traditional approaches like FCFS and Backfilling. Proposed scheme prevented any down time when implemented with a live NetApp storage system.
发表于 2025-3-29 09:00:03 | 显示全部楼层
发表于 2025-3-29 14:41:23 | 显示全部楼层
HGASA: An Efficient Hybrid Technique for Optimizing Data Access in Dynamic Data Grid the performance of the grid. GridSim simulator is used for evaluating the performance of the proposed algorithm. The results show that the proposed algorithm, HGASA, outperforms Genetic Algorithms (GA) by 9 % and Simulated Annealing (SA) by 21 % and Ant Colony Optimization (ACO) by 50 %.
发表于 2025-3-29 16:57:55 | 显示全部楼层
发表于 2025-3-29 23:29:04 | 显示全部楼层
Antonino Pennisi,Alessandra Falzoneynthetic and industry specific I/O intensive jobs have shown to have superior total completion time and total flow time compared to traditional approaches like FCFS and Backfilling. Proposed scheme prevented any down time when implemented with a live NetApp storage system.
发表于 2025-3-30 01:44:36 | 显示全部楼层
发表于 2025-3-30 07:01:17 | 显示全部楼层
On the Biomechanics of External Fixation the performance of the grid. GridSim simulator is used for evaluating the performance of the proposed algorithm. The results show that the proposed algorithm, HGASA, outperforms Genetic Algorithms (GA) by 9 % and Simulated Annealing (SA) by 21 % and Ant Colony Optimization (ACO) by 50 %.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 13:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表