找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008

[复制链接]
查看: 9620|回复: 37
发表于 2025-3-21 19:25:03 | 显示全部楼层 |阅读模式
书目名称Discriminative Learning for Speech Recognition
副标题Theory and Practice
编辑Xiaodong He,Li Deng
视频video
丛书名称Synthesis Lectures on Speech and Audio Processing
图书封面Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008
描述In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-function form. This common form enables the use of the growth transformation (or extended Baum–Welch) optimization framework in discriminative learning of model parameters. In addition to all the necessary introduction of the background and tutorial material on the subject, we also included technical details on the derivation of the parameter optimization formulas for exponential-family distributions, discrete hidden Markov models (HMMs), and continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative
出版日期Book 2008
版次1
doihttps://doi.org/10.1007/978-3-031-02557-0
isbn_softcover978-3-031-01429-1
isbn_ebook978-3-031-02557-0Series ISSN 1932-121X Series E-ISSN 1932-1678
issn_series 1932-121X
copyrightSpringer Nature Switzerland AG 2008
The information of publication is updating

书目名称Discriminative Learning for Speech Recognition影响因子(影响力)




书目名称Discriminative Learning for Speech Recognition影响因子(影响力)学科排名




书目名称Discriminative Learning for Speech Recognition网络公开度




书目名称Discriminative Learning for Speech Recognition网络公开度学科排名




书目名称Discriminative Learning for Speech Recognition被引频次




书目名称Discriminative Learning for Speech Recognition被引频次学科排名




书目名称Discriminative Learning for Speech Recognition年度引用




书目名称Discriminative Learning for Speech Recognition年度引用学科排名




书目名称Discriminative Learning for Speech Recognition读者反馈




书目名称Discriminative Learning for Speech Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:33:40 | 显示全部楼层
1932-121X continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative978-3-031-01429-1978-3-031-02557-0Series ISSN 1932-121X Series E-ISSN 1932-1678
发表于 2025-3-22 03:09:27 | 显示全部楼层
Statistical Speech Recognition: A Tutorial,ing tool for characterizing acoustic features in speech. The purpose of this chapter is to set up the context in which HMM parameter learning and discriminative learning in particular, will be introduced.
发表于 2025-3-22 08:09:04 | 显示全部楼层
发表于 2025-3-22 11:53:41 | 显示全部楼层
发表于 2025-3-22 15:35:05 | 显示全部楼层
发表于 2025-3-22 19:56:46 | 显示全部楼层
Selected Experimental Results, minimum classification error (MCE) training method on both small-vocabulary, well-controlled benchmark tests such as TIDIGITS, and on large-vocabulary, real-world speech recognition tasks such as commercial telephony large-vocabulary ASR (LV-ASR) applications. We show that the GT-based discriminati
发表于 2025-3-23 00:11:32 | 显示全部楼层
978-3-031-01429-1Springer Nature Switzerland AG 2008
发表于 2025-3-23 04:28:34 | 显示全部楼层
Sustainable Design for Global Equilibriuming tool for characterizing acoustic features in speech. The purpose of this chapter is to set up the context in which HMM parameter learning and discriminative learning in particular, will be introduced.
发表于 2025-3-23 06:52:43 | 显示全部楼层
https://doi.org/10.1007/978-3-030-94818-4HMMs). These are: maximum mutual information (MMI), minimum classification error (MCE), and minimum phone error/minimum word error (MPE/MWE). We also compare our unified form of these objective functions with another popular unified form in the literature.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 03:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表