找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discriminants, Resultants, and Multidimensional Determinants; Israel M. Gelfand,Mikhail M. Kapranov,Andrei V. Ze Book 1994 Springer Scienc

[复制链接]
楼主: 颂歌
发表于 2025-3-28 15:12:45 | 显示全部楼层
发表于 2025-3-28 21:45:21 | 显示全部楼层
发表于 2025-3-29 01:15:36 | 显示全部楼层
Associated Varieties and General Resultants vector subspaces in C. correspond to projective subspaces in .., we see that .(.) parametrizes (.−1)-dimensional projective subspaces in ... In a more invariant fashion, we can start from any finite-dimensional vector space . and construct the Grassmannian .(.) of .dimensional vector subspaces in ..
发表于 2025-3-29 06:59:24 | 显示全部楼层
Triangulations and Secondary Polytopesertain class of polytopes, called ., whose vertices correspond to certain triangulations of a given convex polytope. These polytopes will play a crucial role later in the study of the Newton polytopes of discriminants and resultants. The constructions in this chapter are quite elementary.
发表于 2025-3-29 10:29:03 | 显示全部楼层
https://doi.org/10.1007/978-0-8176-4771-1algebra; algebraic geometry; elimination theory; geometry; hyperdeterminants; mathematics; polytopes; resul
发表于 2025-3-29 12:20:33 | 显示全部楼层
发表于 2025-3-29 15:58:42 | 显示全部楼层
Israel M. Gelfand,Mikhail M. Kapranov,Andrei V. ZeThe definitive text on eliminator theory.Revives the classical theory of resultants and discriminants.Presents both old and new results of the theory
发表于 2025-3-29 22:35:33 | 显示全部楼层
Modern Birkhäuser Classicshttp://image.papertrans.cn/e/image/281221.jpg
发表于 2025-3-30 03:13:44 | 显示全部楼层
Discriminants, Resultants, and Multidimensional Determinants
发表于 2025-3-30 04:07:34 | 显示全部楼层
Projective Dual Varieties and General Discriminants∈ C, which are not all equal to 0 and are regarded modulo simultaneous multiplication by a non-zero number. More generally, if . is a finite-dimensional complex vector space, then we denote by .(.) the projectivization of ., i.e., the set of 1-dimensional vector subspaces in .. Thus .. = .(C.).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 23:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表