找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discrete Spectral Synthesis and Its Applications; László Székelyhidi Book 2006 Springer Science+Business Media B.V. 2006 Abelian group.bra

[复制链接]
楼主: ergonomics
发表于 2025-3-25 04:18:51 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-2798-4bles. If for any nonnegative integer . the symbol . denotes the set of all elements . in . for which the degree of . is not greater than ., then we suppose that the polynomials . with . in . form a basis for all polynomials of degree not greater than ..
发表于 2025-3-25 08:57:44 | 显示全部楼层
发表于 2025-3-25 13:40:50 | 显示全部楼层
发表于 2025-3-25 19:13:35 | 显示全部楼层
发表于 2025-3-25 23:35:54 | 显示全部楼层
Book 2006ons, polynomial ideals, digital filtering and polynomial hypergroups is required. This book covers several different problems in this field and is unique in being the only comprehensive coverage of this topic. It should appeal to graduate students and researchers in harmonic analysis, spectral analysis, functional equations and hypergroups..
发表于 2025-3-26 00:44:52 | 显示全部楼层
László SzékelyhidiUnified treatment of several different problems.Wide range exposition of discrete spectral synthesis.Original and effective applications of discrete spectral synthesis in different fields.There is no
发表于 2025-3-26 05:45:01 | 显示全部楼层
发表于 2025-3-26 09:22:40 | 显示全部楼层
发表于 2025-3-26 16:29:10 | 显示全部楼层
Tumors of the Pelvis: Pathologic AspectLet . be an Abelian group. We say that . is a . if every element of . has finite order. In other words, for every . in . there exists a positive integer . with . = 0. Hence . is not a torsion group if and only if there exists an element of . which generates a subgroup isomorphic to ℤ.
发表于 2025-3-26 17:34:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 10:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表