找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discrete Geometry, Combinatorics and Graph Theory; 7th China-Japan Conf Jin Akiyama,William Y. C. Chen,Qinglin Yu Conference proceedings 20

[复制链接]
查看: 42297|回复: 69
发表于 2025-3-21 16:40:42 | 显示全部楼层 |阅读模式
书目名称Discrete Geometry, Combinatorics and Graph Theory
副标题7th China-Japan Conf
编辑Jin Akiyama,William Y. C. Chen,Qinglin Yu
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Discrete Geometry, Combinatorics and Graph Theory; 7th China-Japan Conf Jin Akiyama,William Y. C. Chen,Qinglin Yu Conference proceedings 20
出版日期Conference proceedings 2007
关键词Graph; Graph theory; Sim; algorithm; algorithmic geometry; algorithms; combinatorial mathematics; computati
版次1
doihttps://doi.org/10.1007/978-3-540-70666-3
isbn_softcover978-3-540-70665-6
isbn_ebook978-3-540-70666-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

书目名称Discrete Geometry, Combinatorics and Graph Theory影响因子(影响力)




书目名称Discrete Geometry, Combinatorics and Graph Theory影响因子(影响力)学科排名




书目名称Discrete Geometry, Combinatorics and Graph Theory网络公开度




书目名称Discrete Geometry, Combinatorics and Graph Theory网络公开度学科排名




书目名称Discrete Geometry, Combinatorics and Graph Theory被引频次




书目名称Discrete Geometry, Combinatorics and Graph Theory被引频次学科排名




书目名称Discrete Geometry, Combinatorics and Graph Theory年度引用




书目名称Discrete Geometry, Combinatorics and Graph Theory年度引用学科排名




书目名称Discrete Geometry, Combinatorics and Graph Theory读者反馈




书目名称Discrete Geometry, Combinatorics and Graph Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:49:26 | 显示全部楼层
Supply Chain Management with SAP APO™), where . = . . + . . + . ., . . ≥ 0, . . ≥ 0, . . ≥ 0 and . . + . . + . . ≥ 1. We show that the plane can be subdivided into . disjoint convex polygons . such that every . . contains . red points and . blue points, every . . contains . red points and . + 1 blue points and every . . contains . + 1 red points and . + 1 blue points.
发表于 2025-3-22 04:19:56 | 显示全部楼层
SCM Processes and SAP APO Modulesficient conditions respectively in the situations that the density function achieves its minimum value on a set with positive Lebesgue measure or at finitely many points. We propose also an economical scheme for the coverage of sensor networks with empirical distributions.
发表于 2025-3-22 07:02:38 | 显示全部楼层
发表于 2025-3-22 08:50:17 | 显示全部楼层
Peter Schentler,Antje Krey,Martin Tschandlnteger satisfying .. ≤ . ≤ ... We also find all corresponding integers .. and ... In addition, we prove that if . is the class of all connected cubic planar graphs of order 2. with decycling number . and ., then there exists a sequence of switchings .., .., ..., .. such that for every . = 1, 2, ..., . − 1, . and ..
发表于 2025-3-22 15:03:33 | 显示全部楼层
Kurt Sandkuhl,Alexander Smirnov,Bengt Henoch to these weaker conditions mentioned above. In this paper, we study the relations among these different conditions. In particular, we prove that every triangularly connected claw-free graph without isolated vertices is also quasilocally connected claw-free.
发表于 2025-3-22 19:21:19 | 显示全部楼层
发表于 2025-3-23 01:18:03 | 显示全部楼层
On the Choice Numbers of Some Complete Multipartite Graphs,mplete (. + 1)-partite graph . .. Using these, we determine the choice numbers for some complete multipartite graphs . .. As a byproduct, we classify (i) completely those complete tripartite graphs . . and (ii) almost completely those complete bipartite graphs . . (for . ≤ 6) according to their choice numbers.
发表于 2025-3-23 04:44:13 | 显示全部楼层
发表于 2025-3-23 05:35:27 | 显示全部楼层
A Neighborhood Condition for Graphs to Have [,, ,]-Factors III,r any subgraph . of . with . edges and .(. − .(.)) ≥ ., . has an [., .]-factor . such that .(.) ∩ .(.) = ∅. This result is best possible in some sense and it is an extension of the result of Matsuda (Discrete Mathematics . (2000) 289–292).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 21:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表