找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discrete Differential Geometry; Alexander I. Bobenko,John M. Sullivan,Günter M. Zi Book 2008 Birkhäuser Basel 2008 Minimal surface.compute

[复制链接]
楼主: 古生物学
发表于 2025-3-25 03:59:12 | 显示全部楼层
发表于 2025-3-25 10:06:32 | 显示全部楼层
发表于 2025-3-25 13:32:42 | 显示全部楼层
发表于 2025-3-25 19:22:25 | 显示全部楼层
https://doi.org/10.1007/978-3-642-01270-9hat the complex curvature of a discrete space curve evolves with the discrete nonlinear Schrödinger equation (NLSE) of Ablowitz and Ladik, when the curve evolves with the Hashimoto or smoke-ring flow. A doubly discrete Hashimoto flow is derived and it is shown that in this case the complex curvature
发表于 2025-3-25 21:13:19 | 显示全部楼层
发表于 2025-3-26 03:24:08 | 显示全部楼层
发表于 2025-3-26 07:56:46 | 显示全部楼层
发表于 2025-3-26 11:09:14 | 显示全部楼层
https://doi.org/10.1057/9781137296504chieved in the famous “Map Color Theorem” by Ringel et al. (1968). We present the nicest one of Ringel’s constructions, for the case . ≡ 7 mod 12, but also an alternative construction, essentially due to Heffter (1898), which easily and explicitly yields surfaces of genus . ∼ 1/16 ....For . (polyhed
发表于 2025-3-26 16:42:18 | 显示全部楼层
The Drill Support Tooling Module Projects out such a first-principles approach gives us quantities such as mean and Gaussian curvature integrals in the discrete setting and more generally, fully characterizes a certain class of possible measures. Consequently one can characterize all possible “ sensible” measurements in the discrete setti
发表于 2025-3-26 19:49:36 | 显示全部楼层
https://doi.org/10.1007/978-94-009-1299-1note gives an overview of approximation and convergence properties of discrete Laplacians and mean curvature vectors for polyhedral surfaces located in the vicinity of a smooth surface in euclidean 3-space. In particular, we show that mean curvature vectors converge in the sense of distributions, bu
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 10:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表