找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discovery Science; 18th International C Nathalie Japkowicz,Stan Matwin Conference proceedings 2015 Springer International Publishing Switze

[复制链接]
查看: 45553|回复: 61
发表于 2025-3-21 18:02:56 | 显示全部楼层 |阅读模式
书目名称Discovery Science
副标题18th International C
编辑Nathalie Japkowicz,Stan Matwin
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Discovery Science; 18th International C Nathalie Japkowicz,Stan Matwin Conference proceedings 2015 Springer International Publishing Switze
描述This book constitutes the proceedings of the 17th InternationalConference on Discovery Science, DS 2015, held in banff, AB, Canada inOctober 2015. The 16 long and 12 short papers presendted together with 4 invited talks in this volume were carefullyreviewed and selected from 44 submissions. The combination of recent advances in the development and analysis of methods for discovering scienti c knowledge, coming from machine learning, data mining, and intelligent data analysis, as well as their application in various scienti c domains, on the one hand, with the algorithmic advances in machine learning theory, on the other hand, makes every instance of this joint event unique and attractive..
出版日期Conference proceedings 2015
关键词biomedical knowledge discovery; data mining; evolving data and models; machine learning; Web mining; acti
版次1
doihttps://doi.org/10.1007/978-3-319-24282-8
isbn_softcover978-3-319-24281-1
isbn_ebook978-3-319-24282-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Discovery Science影响因子(影响力)




书目名称Discovery Science影响因子(影响力)学科排名




书目名称Discovery Science网络公开度




书目名称Discovery Science网络公开度学科排名




书目名称Discovery Science被引频次




书目名称Discovery Science被引频次学科排名




书目名称Discovery Science年度引用




书目名称Discovery Science年度引用学科排名




书目名称Discovery Science读者反馈




书目名称Discovery Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:42:14 | 显示全部楼层
发表于 2025-3-22 00:51:23 | 显示全部楼层
https://doi.org/10.1007/978-1-349-05134-2be generalized to deal with a large class of string classification problems. The method achieves sensitivity and specificity values of up to 92 % on the settings we experimented with, while providing intuitive classifiers that are easy to interpret for the domain expert.
发表于 2025-3-22 05:56:05 | 显示全部楼层
Davide Passaretti,Domenico Vistoccosimilarities within symbols in patterns from a given database based on the definition of patterns we would like to mine, and to use clustering methods based on the similarities computed. Although the original method cannot allow for periods, we generalize it by using the periodicity. We give experim
发表于 2025-3-22 08:46:39 | 显示全部楼层
发表于 2025-3-22 15:58:26 | 显示全部楼层
发表于 2025-3-22 20:21:19 | 显示全部楼层
发表于 2025-3-22 23:11:53 | 显示全部楼层
发表于 2025-3-23 03:44:18 | 显示全部楼层
发表于 2025-3-23 08:11:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 11:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表