找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discovery Science; 16th International C Johannes Fürnkranz,Eyke Hüllermeier,Tomoyuki Higuc Conference proceedings 2013 Springer-Verlag Berl

[复制链接]
查看: 45952|回复: 59
发表于 2025-3-21 17:29:16 | 显示全部楼层 |阅读模式
书目名称Discovery Science
副标题16th International C
编辑Johannes Fürnkranz,Eyke Hüllermeier,Tomoyuki Higuc
视频video
概述Conference proceedings of the International Conference on Discovery Science, DS 2013
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Discovery Science; 16th International C Johannes Fürnkranz,Eyke Hüllermeier,Tomoyuki Higuc Conference proceedings 2013 Springer-Verlag Berl
描述This book constitutes the proceedings of the 16th International Conference on Discovery Science, DS 2013, held in Singapore in October 2013, and co-located with the International Conference on Algorithmic Learning Theory, ALT 2013. The 23 papers presented in this volume were carefully reviewed and selected from 52 submissions. They cover recent advances in the development and analysis of methods of automatic scientific knowledge discovery, machine learning, intelligent data analysis, and their application to knowledge discovery.
出版日期Conference proceedings 2013
关键词constraint-based clustering; domain ontology; hypernetworks; semantic data mining; structure learning; al
版次1
doihttps://doi.org/10.1007/978-3-642-40897-7
isbn_softcover978-3-642-40896-0
isbn_ebook978-3-642-40897-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Discovery Science影响因子(影响力)




书目名称Discovery Science影响因子(影响力)学科排名




书目名称Discovery Science网络公开度




书目名称Discovery Science网络公开度学科排名




书目名称Discovery Science被引频次




书目名称Discovery Science被引频次学科排名




书目名称Discovery Science年度引用




书目名称Discovery Science年度引用学科排名




书目名称Discovery Science读者反馈




书目名称Discovery Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:44:34 | 显示全部楼层
Model Tree Ensembles for Modeling Dynamic Systems,ally converted into a classical regression problem, which can then be solved with any nonlinear regression approach. As tree ensembles are a very successful predictive modelling approach, we investigate the use of tree ensembles for regression for this task..While ensembles of regression trees have
发表于 2025-3-22 03:07:45 | 显示全部楼层
Fast and Scalable Image Retrieval Using Predictive Clustering Trees,ficient and accurate systems for image retrieval. State-of-the-art systems for image retrieval use the bag-of-visual-words representation of the images. However, the computational bottleneck in all such systems is the construction of the visual vocabulary (i.e., how to obtain the visual words). This
发表于 2025-3-22 06:03:47 | 显示全部楼层
Avoiding Anomalies in Data Stream Learning, refer to data cleaning as a pre-processing before the learning task. The problem of data cleaning is exacerbated when learning in the computational model of data streams. In this paper we present a streaming algorithm for learning classification rules able to detect contextual anomalies in the data
发表于 2025-3-22 09:16:38 | 显示全部楼层
Generalizing from Example Clusters,t with the given clusters. This is essentially a semi-supervised clustering problem, but it differs from previously studied semi-supervised clustering settings in significant ways. Earlier work has shown that none of the existing methods for semi-supervised clustering handle this problem well. We id
发表于 2025-3-22 16:18:12 | 显示全部楼层
发表于 2025-3-22 20:25:10 | 显示全部楼层
发表于 2025-3-23 01:08:42 | 显示全部楼层
A New Approach to String Pattern Mining with Approximate Match,ring data analysis on strings such as texts, word sequences, and genome sequences. The problem becomes difficult if the string patterns are allowed to match approximately, i.e., a fixed number of errors leads to an explosion in the number of small solutions, and a fixed ratio of errors violates the
发表于 2025-3-23 04:46:03 | 显示全部楼层
OntoDM-KDD: Ontology for Representing the Knowledge Discovery Process,-KDD defines the most essential entities for describing data mining investigations in the context of KD in a two-layered ontological structure. The ontology is aligned and reuses state-of-the-art resources for representing scientific investigations, such as Information Artifact Ontology (IAO) and On
发表于 2025-3-23 09:35:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 02:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表