找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; V. V. Aristov Book 2001 Springer Science+Business Med

[复制链接]
楼主: Jefferson
发表于 2025-3-23 12:11:15 | 显示全部楼层
The Boltzmann Equation as a Physical and Mathematical Model,analytically or numerically) with the Boltzmann equation. The peculiarities of formulation of mathematical problems for the kinetic equation and some types of the boundary conditions are considered. The physical peculiarities of the kinetic Boltzmann equation (in particular, the important property of irreversibility) are also discussed.
发表于 2025-3-23 17:37:59 | 显示全部楼层
发表于 2025-3-23 19:52:40 | 显示全部楼层
发表于 2025-3-24 00:51:35 | 显示全部楼层
发表于 2025-3-24 04:03:18 | 显示全部楼层
发表于 2025-3-24 08:23:14 | 显示全部楼层
Deterministic (Regular) Method for Solving the Boltzmann Equation,g the right-hand side of the Boltzmann equation are developed in recent years [.–.]. Such numerical schemes are attractive due to the simple structure of terms that approximate the collision integrals, good perspectives for paralleling, a clear way for estimating numerical errors, etc.
发表于 2025-3-24 12:52:30 | 显示全部楼层
Parallel Algorithms for the Kinetic Equation,ears, our description of state of art in this field will be out of date as soon as it is published. Nevertheless, we can note the main features of schemes for directly solving the Boltzmann equation which are used for parallel implementation.
发表于 2025-3-24 15:22:02 | 显示全部楼层
发表于 2025-3-24 21:22:13 | 显示全部楼层
发表于 2025-3-25 00:37:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-26 20:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表